Boundary-Layer Meteorology

, Volume 63, Issue 1–2, pp 39–64 | Cite as

Derivation of water vapor fluxes from Lidar measurements

  • W. E. Eichinger
  • D. I. Cooper
  • D. B. Holtkamp
  • R. R. KarlJr.
  • C. R. Quick
  • J. J. Tiee


Two techniques are described by which the flux of water vapor can be derived from concentration measurements made by a Raman-Lidar. Monin-Obukhov similarity theory and dissipation techniques are used as the basis for these methods. The resulting fluxes are compared to fluxes from standard point instruments. The techniques described are appropriate for measuring the flux of any scalar quantity using Lidar measurements in the inner region of the boundary layer.


Boundary Layer Water Vapor Lidar Concentration Measurement Similarity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, R. A.: 1989, ‘Enhancement of Convective Precipitation by Mesoscale Variations in Vegetative Covering in Semiarid Regions’,J. Climate and Appl. Meteorol. 23, 541–554.Google Scholar
  2. Arshinov, Y. F., Bobrovnikov, S. M., Zuev, V. E., and Mitev, V. M.: 1983, ‘Atmospheric Temperature Measurements Using a Pure Rotational Raman Lidar’,Appl. Opt. 22, 2984–2990.Google Scholar
  3. Brutsaert, W.: 1984,Evaporation Into the Atmosphere, Reidel Pub. Comp., pp. 299.Google Scholar
  4. Busch, N. E. and Panofsky, H. A.: 1968, ‘Recent Spectra of Atmospheric Turbulence’,Quart. J. R. Meteorol. Soc. 94, 132–148.Google Scholar
  5. Caramori, P. H., Schuepp, P. H., Desjardins, R. L., and Macpherson, J. I.: 1991, ‘Structural Analysis of Airborne Vapor Flux Traces over a Region’,Abstracts, Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometeorology, Salt Lake City, Utah, September 10–13, 1991, 161–162.Google Scholar
  6. Cooney, J., Petri, K., and Salik, A.: 1985, ‘Measurement of High Resolution Atmospheric Water-Vapor Profiles by use of a Solar-Blind, Raman-Lidar’,Appl. Optics. 24, 104–108.Google Scholar
  7. Cooper, D. I., Eichinger, W. E., Hipps, L., Dugas, W., Holtkamp, D. B., Karl, R. R., and Barnes, F.: 1991, ‘Mapping the Spatial Variability of Latent Energy Fluxes and Water-Vapor Concentrations over an Agronomic Field’,Twentieth Conference on Agricultural and Forest Meteorology, Sept. 10–13, 1991, Salt Lake City, UT.Google Scholar
  8. Corrsin, S.: 1951, ‘On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence’,J. Appl. Physics. 22(4), 469–473.Google Scholar
  9. Eichinger, W. E, Cooper, D. I., Hof, D. E., Holtkamp, D. B., Karl, R. R., Quick, C. R., and Tiee, J. J.: 1992, ‘Development and Application of a Scanning, Solar-Blind, Water Raman-Lidar’, Submitted toAppl. Optics, LA-UR-92-0078.Google Scholar
  10. Eloranta, E. W. and Schols, J. L: 1990, ‘Measurements of Spatially Averaged Wind Profiles With Volume Imaging Lidar’,Abstracts, Fifteenth International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.Google Scholar
  11. Garratt, J. R.: 1972, ‘Studies of Turbulence in the Surface Layer over Water. Part II: Production and Dissipation of Velocity and Temperature Fluctuations’,Quart. J. R. Meteorol. Soc. 98, 642–657.Google Scholar
  12. Hooper, W., and Eloranta, E.: 1986, ‘Lidar Measurement of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon’,J. Climate and Appl. Meteorol. 25, 990–1001.Google Scholar
  13. Kader, B. A. and Yaglom, M. Y.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’,J. Fluid Mech. 212, 637–662.Google Scholar
  14. Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankov, B. B., Kahn, P. H., and Businger, J. A.: 1982, ‘Spectral Characteristics of the Convective Boundary Layer over Uneven Terrain’,J. Atm. Sci. 39, 1098–1114.Google Scholar
  15. Kolev, I., Parvanov, O., and Kaprielov, B.: 1988, ‘Lidar Determination of Winds by Aerosol Inhomogeneities: Motion Velocity in the Planetary Boundary Layer’,Appl. Optics 27, 2524–2531.Google Scholar
  16. Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’,C.R. Acad. Sci. USSR 30, 301–305.Google Scholar
  17. Leslie, D. C.: 1973,Developments in the Theory of Turbulence, Clarendon Press, Oxford, England.Google Scholar
  18. Lumley, J. L. and Panofsky, H. A.: 1964,Structure of Atmospheric Turbulence, Interscience-Wiley, 239 pp.Google Scholar
  19. Mahfouf, J. F., Richard, E., and Mascart, P.: 1987, ‘The Influence of Soil and Vegetation on the Development of Mesoscale Circulations’,J. Climate Appl. Meteorol. 26, 1483–1495.Google Scholar
  20. Panofsky, H. A. and Dutton, J. A.: 1984,Atmospheric Turbulence, John Wiley and Sons, New York.Google Scholar
  21. Paquin, J. E. and S. Pond: 1971, ‘Determination of the Kolmogoroff Constants for Velocity, Temperature, and Humidity Fluctuations from Second and Third Order Structure Functions’,J. Fluid Mech. 50, 257–269.Google Scholar
  22. Petri, K., Salik, A., and Cooney, J.: 1982 ‘Variable-Wavelength Solar-Blind Raman Lidar for Remote Measurement of Atmospheric Water-Vapor Concentration and Temperature’,Appl. Opt. 21, 1212–1218.Google Scholar
  23. Pielke, R. A. and Avissar, R.: 1990, ‘The Influence of Landscape Structure on Local and Regional Climate’, Landscape Ecology4(2/3), 133–155.Google Scholar
  24. Sorbjan, Z.: 1989,Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, NJ. pp. 317.Google Scholar
  25. Sasano, Y., Hirohara, H., Yamasaki, T., Shimizu, H., Takeuchi, N., and Kawamura, T.: 1982, ‘Horizontal Wind Vector Determination from the Displacement of Aerosol Distribution Patterns Observed by a Scanning Lidar’,J. Appl. Meteorol. 21, 1516–1523.Google Scholar
  26. Smedman-Högström, A.: 1973, ‘Temperature and Humidity Spectra in the Atmospheric Surface Layer’,Boundary-Layer Meteorol. 3, 329–347.Google Scholar
  27. Sroga, J. and Eloranta, E.: 1980, ‘Lidar Measurement of Wind Velocity Profiles in the Boundary Layer’,J. Appl. Meteorol. 19, 598–605.Google Scholar
  28. Tanner, B. D.: 1984,International Symposium in Memory of Dr. Franz Sauberer, Vienna, Austria, October 23–25.Google Scholar
  29. Tennekes, H. and Lumley, J. L.: 1972,A First Course in Turbulence, MIT Press, Cambridge, MA, pp. 300.Google Scholar
  30. Tillman, J. E.: 1991, ‘In-situ Water Vapor Measurements in the Lyman-Alpha and Infrared Spectrum: Theory and Components’, in T. J. Schmugge and J. C. André (eds.),Land Surface Evaporation, Springer-Verlag, New York.Google Scholar
  31. Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects due to Heat and Water Vapor Transfer’,Quart. J. R. Meteorol. Soc. 106, 85–100.Google Scholar
  32. Wyngaard, J. C. and Coté, O. R.: 1970, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’,J. Atm. Sci. 28, 190–200.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • W. E. Eichinger
    • 1
  • D. I. Cooper
    • 1
  • D. B. Holtkamp
    • 1
  • R. R. KarlJr.
    • 1
  • C. R. Quick
    • 1
  • J. J. Tiee
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations