Skip to main content
Log in

Derivation of water vapor fluxes from Lidar measurements

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two techniques are described by which the flux of water vapor can be derived from concentration measurements made by a Raman-Lidar. Monin-Obukhov similarity theory and dissipation techniques are used as the basis for these methods. The resulting fluxes are compared to fluxes from standard point instruments. The techniques described are appropriate for measuring the flux of any scalar quantity using Lidar measurements in the inner region of the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A.: 1989, ‘Enhancement of Convective Precipitation by Mesoscale Variations in Vegetative Covering in Semiarid Regions’,J. Climate and Appl. Meteorol. 23, 541–554.

    Google Scholar 

  • Arshinov, Y. F., Bobrovnikov, S. M., Zuev, V. E., and Mitev, V. M.: 1983, ‘Atmospheric Temperature Measurements Using a Pure Rotational Raman Lidar’,Appl. Opt. 22, 2984–2990.

    Google Scholar 

  • Brutsaert, W.: 1984,Evaporation Into the Atmosphere, Reidel Pub. Comp., pp. 299.

  • Busch, N. E. and Panofsky, H. A.: 1968, ‘Recent Spectra of Atmospheric Turbulence’,Quart. J. R. Meteorol. Soc. 94, 132–148.

    Google Scholar 

  • Caramori, P. H., Schuepp, P. H., Desjardins, R. L., and Macpherson, J. I.: 1991, ‘Structural Analysis of Airborne Vapor Flux Traces over a Region’,Abstracts, Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometeorology, Salt Lake City, Utah, September 10–13, 1991, 161–162.

  • Cooney, J., Petri, K., and Salik, A.: 1985, ‘Measurement of High Resolution Atmospheric Water-Vapor Profiles by use of a Solar-Blind, Raman-Lidar’,Appl. Optics. 24, 104–108.

    Google Scholar 

  • Cooper, D. I., Eichinger, W. E., Hipps, L., Dugas, W., Holtkamp, D. B., Karl, R. R., and Barnes, F.: 1991, ‘Mapping the Spatial Variability of Latent Energy Fluxes and Water-Vapor Concentrations over an Agronomic Field’,Twentieth Conference on Agricultural and Forest Meteorology, Sept. 10–13, 1991, Salt Lake City, UT.

  • Corrsin, S.: 1951, ‘On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence’,J. Appl. Physics. 22(4), 469–473.

    Google Scholar 

  • Eichinger, W. E, Cooper, D. I., Hof, D. E., Holtkamp, D. B., Karl, R. R., Quick, C. R., and Tiee, J. J.: 1992, ‘Development and Application of a Scanning, Solar-Blind, Water Raman-Lidar’, Submitted toAppl. Optics, LA-UR-92-0078.

  • Eloranta, E. W. and Schols, J. L: 1990, ‘Measurements of Spatially Averaged Wind Profiles With Volume Imaging Lidar’,Abstracts, Fifteenth International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.

  • Garratt, J. R.: 1972, ‘Studies of Turbulence in the Surface Layer over Water. Part II: Production and Dissipation of Velocity and Temperature Fluctuations’,Quart. J. R. Meteorol. Soc. 98, 642–657.

    Google Scholar 

  • Hooper, W., and Eloranta, E.: 1986, ‘Lidar Measurement of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon’,J. Climate and Appl. Meteorol. 25, 990–1001.

    Google Scholar 

  • Kader, B. A. and Yaglom, M. Y.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’,J. Fluid Mech. 212, 637–662.

    Google Scholar 

  • Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankov, B. B., Kahn, P. H., and Businger, J. A.: 1982, ‘Spectral Characteristics of the Convective Boundary Layer over Uneven Terrain’,J. Atm. Sci. 39, 1098–1114.

    Google Scholar 

  • Kolev, I., Parvanov, O., and Kaprielov, B.: 1988, ‘Lidar Determination of Winds by Aerosol Inhomogeneities: Motion Velocity in the Planetary Boundary Layer’,Appl. Optics 27, 2524–2531.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’,C.R. Acad. Sci. USSR 30, 301–305.

    Google Scholar 

  • Leslie, D. C.: 1973,Developments in the Theory of Turbulence, Clarendon Press, Oxford, England.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964,Structure of Atmospheric Turbulence, Interscience-Wiley, 239 pp.

  • Mahfouf, J. F., Richard, E., and Mascart, P.: 1987, ‘The Influence of Soil and Vegetation on the Development of Mesoscale Circulations’,J. Climate Appl. Meteorol. 26, 1483–1495.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984,Atmospheric Turbulence, John Wiley and Sons, New York.

    Google Scholar 

  • Paquin, J. E. and S. Pond: 1971, ‘Determination of the Kolmogoroff Constants for Velocity, Temperature, and Humidity Fluctuations from Second and Third Order Structure Functions’,J. Fluid Mech. 50, 257–269.

    Google Scholar 

  • Petri, K., Salik, A., and Cooney, J.: 1982 ‘Variable-Wavelength Solar-Blind Raman Lidar for Remote Measurement of Atmospheric Water-Vapor Concentration and Temperature’,Appl. Opt. 21, 1212–1218.

    Google Scholar 

  • Pielke, R. A. and Avissar, R.: 1990, ‘The Influence of Landscape Structure on Local and Regional Climate’, Landscape Ecology4(2/3), 133–155.

    Google Scholar 

  • Sorbjan, Z.: 1989,Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, NJ. pp. 317.

    Google Scholar 

  • Sasano, Y., Hirohara, H., Yamasaki, T., Shimizu, H., Takeuchi, N., and Kawamura, T.: 1982, ‘Horizontal Wind Vector Determination from the Displacement of Aerosol Distribution Patterns Observed by a Scanning Lidar’,J. Appl. Meteorol. 21, 1516–1523.

    Google Scholar 

  • Smedman-Högström, A.: 1973, ‘Temperature and Humidity Spectra in the Atmospheric Surface Layer’,Boundary-Layer Meteorol. 3, 329–347.

    Google Scholar 

  • Sroga, J. and Eloranta, E.: 1980, ‘Lidar Measurement of Wind Velocity Profiles in the Boundary Layer’,J. Appl. Meteorol. 19, 598–605.

    Google Scholar 

  • Tanner, B. D.: 1984,International Symposium in Memory of Dr. Franz Sauberer, Vienna, Austria, October 23–25.

  • Tennekes, H. and Lumley, J. L.: 1972,A First Course in Turbulence, MIT Press, Cambridge, MA, pp. 300.

    Google Scholar 

  • Tillman, J. E.: 1991, ‘In-situ Water Vapor Measurements in the Lyman-Alpha and Infrared Spectrum: Theory and Components’, in T. J. Schmugge and J. C. André (eds.),Land Surface Evaporation, Springer-Verlag, New York.

    Google Scholar 

  • Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects due to Heat and Water Vapor Transfer’,Quart. J. R. Meteorol. Soc. 106, 85–100.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1970, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’,J. Atm. Sci. 28, 190–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichinger, W.E., Cooper, D.I., Holtkamp, D.B. et al. Derivation of water vapor fluxes from Lidar measurements. Boundary-Layer Meteorol 63, 39–64 (1993). https://doi.org/10.1007/BF00705376

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705376

Keywords

Navigation