Skip to main content

Titanium for aerospace: Rationale and applications

Abstract

Titanium and titanium alloys are excellent candidates for aerospace applications due to their high strength to weight ratio and excellent corrosion resistance; titanium and its alloys are immune to almost every medium to which they would be exposed in an aerospace environment. Titanium usage is, however, strongly limited by its higher cost relative to competing materials, primarily aluminum alloys and steels. Hence the advantages to using titanium must be balanced against its added cost. The titanium alloys used for aerospace applications, some of the characteristics of these alloys, the rationale for utilizing them, and some specific applications of different types of actual usage will be discussed herein.

This is an extension of References 1 and 2, which reviewed applicaiions of β alloys. These references will provide more details on applications of the β alloys, while the α and α/β alloys are added herein.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Boyer, R.R.: Applications of Beta Titanium Alloys in Airframes, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 335–346, 1993.

    Google Scholar 

  2. 2.

    Boyer, R.R.: Aerospace Applications of Beta Titanium-Keynote Presentation, Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres (eds.) Paris, France Société Francaise de Métallurgie et de Matériaux, pp. 253–264, 1994.

    Google Scholar 

  3. 3.

    Bania, P.J.: Beta Titanium Alloys and Their Role in the Titanium Industry—Keynote Lecture, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 3–14, 1993.

    Google Scholar 

  4. 4.

    Collings, E.W.: The Physical Metallurgy of Titanium Alloys, Materials Park, OH: ASM, pp. 2–4, 1984.

    Google Scholar 

  5. 5.

    Duerig, T.W. and Williams, J.C.: Overview: Microstructure and Properties of Beta Titanium Alloys, Beta Titanium Alloys in the 1980's R.R. Boyer and H.W. Rosenberg (eds.), Warrendale, PA: TMS, pp. 19–67, 1984.

    Google Scholar 

  6. 6.

    Thiehsen, K.E. et al.: The effect of nickel, chromium, and primary alpha phase on the creep behavior of Ti-6242Si. Met. Trans. A., 24A:1819–1826, 1993.

    Google Scholar 

  7. 7.

    Seagle, S.R., Hall, G.S., and Bomberger, H.B.: Met. Engr. Q., pp. 48–54, Feb. 1972.

  8. 8.

    Flower, H.M.: Mat. Sci. and Tech. 6:1082–1092, 1990.

    Google Scholar 

  9. 9.

    Seagle, S.R. and Bomberger, H.B.: Creep-Resistant Titanium Alloys, The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel (eds.), Pergamon Press, N.Y., pp. 1001–1008, 1970.

    Google Scholar 

  10. 10.

    Boyer, R.R.: Design properties of a high strength titanium alloy, Ti-10V-2Fe-3Al, J.O.M. 32:61–65, 1980.

    Google Scholar 

  11. 11.

    Davies, D.P.: Effect of Heat Treatment on the Mechanical Properties of Ti-10V-2Fe-3Al for Dynamically Critical Helicopter Components, Titanium '92 Science and Technology, F.H. Froes and I.L. Caplan (eds.), Warrendale, PA: TMS, pp. 1851–1858, 1993.

    Google Scholar 

  12. 12.

    Carey, R.S., Boyer, R.R., and Rosenberg, H.W.: Fatigue Properties of Ti-10V-2Fe-3Al, Titanium Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk (eds.), Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, pp. 1261–1267, 1985.

    Google Scholar 

  13. 13.

    Boyer, R.R., Bajoraitis, R., Greenwood, D.W., and Mild, E.E.: Ti-3Al-8V-6Cr-4Mo-4Zr Wire for Spring Applications, Beta Titanium Alloys in the 1980's, R.R. Boyer, and H.W. Rosenberg (eds.), Warrendale, PA: TMS, pp. 295–305, 1984.

    Google Scholar 

  14. 14.

    Wagner, L. and Gregory, J.K.: Improvement of Mechanical Behavior in Ti-3Al-8V-6Cr-4Mo-4Zr, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 199–209, 1993.

    Google Scholar 

  15. 15.

    Eylon, D. et al.: Casting of High Strength Beta Titanium Alloys, Sixth World Conference on Titanium, P. Lacombe, R. Tricot, and G. Béranger (eds.), Société Francaise de Métallurgie, Cedex, France pp. 655–660, 1989.

    Google Scholar 

  16. 16.

    Messler, R.W. Jr: Electron Beam Weldability of Advanced Titanium Alloys, Welding Research Supplement, pp. 79-s-84-s, May 1981.

  17. 17.

    Chen, C.C. and Boyer, R.R.: Practical considerations for manufacturing high strength Ti-10V-2Fe-3Al forgings, J.O.M., 31:33–39, 1979.

    Google Scholar 

  18. 18.

    Van Stone, R.H., et al.: Infuence of Composition, Annealing Temperature, and Texture on the Fracture Toughness of Ti-5Al-2.5Sn Plate at Cryogenic Temperatures, Toughness and Fracture Behavior of Titanium, ASTMP STP 651, Baltimore, MD: ASTM, pp. 154–179, 1978.

    Google Scholar 

  19. 19.

    Fujishiro, S., Froes, F.H., Matsumoto, T., and Eylon, D.: Effect of Processing on the Mechanical Properties of IMI-829 Titanium Alloys, Titanium Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk (eds.), Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, pp. 593–600, 1985.

    Google Scholar 

  20. 20.

    Blenkinsop, P.A.: Critical Review, Developments in High Temperature Alloys,ibid., pp. 2323–2338.

    Google Scholar 

  21. 21.

    Neal, D.F.: Optimisation of Creep and Fatigue Resistance in High Temperature Ti Alloys IMI 829 and IMI 834,ibid., pp. 2419–2424.

    Google Scholar 

  22. 22.

    Neal, D.F.: Development and Evaluation on High Temperature Titanium Alloy IMI 834, Sixth World Conference on Titanium, P. Lacombe, R. Tricot, and G. Béranger (eds.), Société Francaise de Métallurgie, Cedex, France, pp. 253–258, 1989.

    Google Scholar 

  23. 23.

    Bania, P.J.: Ti-1100. A New High Temperature Titanium Alloy, Sixth World Conference on Titanium, P. Lacombe, R. Tricot, and G. Béranger (eds.), Société Francaise de Métallurgie, Cedex, France, pp. 825–830, 1989.

    Google Scholar 

  24. 24.

    Kuhlman, G.W.: A Critical Appraisal of Thermomechanical Processing of Structural Titanium Alloys, Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim, and R.R. Boyer (eds.), Warrendale, PA, TMS, pp. 465–491, 1993.

    Google Scholar 

  25. 25.

    Superplasticity, Agard Lecture Series No. 154, Loughton, England: AGARD, 1987.

  26. 26.

    Phelps, H.R. and Wood, J.R.: Correlation of Mechanical Properties and Microstructures of Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25S Titanium Alloy, Titanium '92 Science and Technology, F.H. Froes and I.L. Caplan (eds.), Warrendale, PA, TMS, pp. 193–199, 1993.

    Google Scholar 

  27. 27.

    Boyer, R.R. and Caddey, A.E.: The Properties of Ti-6Al-2Sn-2Zr-2Mo-2Cr Sheet,ibid., 1647–1652.

    Google Scholar 

  28. 28.

    Bliss, R.C.: Evaluation of Ti-6Al-2Sn-2Zr-2Mo-2Cr-23Si Sheet,ibid, pp. 201–208.

    Google Scholar 

  29. 29.

    Redden, T.K.: Processing and Properties of the Ti-17 Alloy for Aircraft Gas Turbine Engines, Beta Titanium Alloys in the 1980's, R.R. Boyer and H.W. Rosenberg (eds.), Warrendale, PA: TMS, pp. 239–254, 1984.

    Google Scholar 

  30. 30.

    Rosenberg, H.W.: Ti-17 Propertiesibid., pp. 433–439.

    Google Scholar 

  31. 31.

    Boyer, R.R. and Rosenberg, H.W.: Beta Titanium on the SR-71: Historical Note I,ibid., pp. 1–8.

    Google Scholar 

  32. 32.

    Parris, W.M. and Rosenberg, H.W.: Producing Ti-13V-11Cr-3Al Mill Product at TMCA: Historical Note II, ibid., pp.9–15.

    Google Scholar 

  33. 33.

    Boyer, R.R., Bajoraitis, R., Greenwood, D.W., and Mild, E.E.: Ti-3Al-8V-6Cr-4Mo-4Zr Wire for Spring Applications,ibid., pp. 295–305.

    Google Scholar 

  34. 34.

    Sherman, A.M. and Seagle, S.R.: Torsional Properties and Performance of Beta Titanium Alloy Automotive Suspension Springs,ibid., pp. 281–293.

    Google Scholar 

  35. 35.

    Porter, W.J. and Eylon, D.: Effect of HIP and Heat Treatment on Fatigue Initiation and Tensile Failure in Ti-15V-3Cr-3Al-3Sn Castings, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.), Warrendale, PA, TMS, pp. 273–281, 1993.

    Google Scholar 

  36. 36.

    Porter, W.J., Boyer, R.R., and Eylon, D.: Effects of Microstructure on the Mechanical Properties of Ti-15V-3Cr-3Al-3Sn Castings, Titanium '92 Science and Technology, F.H. Froes and I.L. Caplan (eds.), Warrendale, PA: TMS, pp. 1511–1518, 1993.

    Google Scholar 

  37. 37.

    Kuhlman, G.W.: ALCOA Titanium Alloy Ti-10V-2Fe-3Al Forgings, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 485–512, 1993.

    Google Scholar 

  38. 38.

    Duerig, T.W., Allison, J.E., and Williams, J.C.: Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3Al. Met. Trans. A, 16A:739–751, May 1985.

    Google Scholar 

  39. 39.

    Fanning, J.C.: Timetal 21S Property Data, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.) Warrendale, PA: TMS, pp. 397–410, 1993.

    Google Scholar 

  40. 40.

    Boyer, R.R. and Hall, J.A.: Microstructure-Property Relationships in Titanium Alloys (Critical Review), Titanium '92 Science and Technology, F.H. Froes and I.L. Caplan (eds.), Warrendale, PA: TMS, pp. 77–78, 1993.

    Google Scholar 

  41. 41.

    Grauman, J.S.: Effects of Aircraft Hydraulic Fluid on TIMETAL 21S, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer, and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 127–135, 1993.

    Google Scholar 

  42. 42.

    Schutz, R.W.: An Overview of Beta Titanium Alloy Environmental Behavior, Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres (eds.), Paris, France: Société Francaise de Métallurgie et de Matériaux, pp. 215–228, 1994.

    Google Scholar 

  43. 43.

    Eylon, D.: A Review of Beta Titanium Alloys,ibid., pp. 75–82.

    Google Scholar 

  44. 44.

    Bania, P.J., Hutt, A.J., Adams, R.E., and Parris, W.M.: A New Low Cost Titanium Alloy, Titanium '92 Science and Technology, F.H. Froes, and I.L. Caplan (eds.), Warrendale, PA TMS, pp.2787–2794, 1993.

    Google Scholar 

  45. 45.

    Bania, P.J.: Beta Titanium Alloys and Their Role in the Titanium Industry, Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres (eds.), Paris, France: Société Francaise de Métallurgie et de Matériaux, pp. 7–20, 1994.

    Google Scholar 

  46. 46.

    Titanium Con Rods Boost Power, Adv. Matls. and Proc., pp. 24–26, June 1993.

  47. 47.

    Ishikawa, M., Kuboyama, O., Niikura, M., and Ouchi, C.: Microstructure and Mechanical Properties Relationship of β-Rich α/β Alloy; SP-700, Titanium '92 Science and Technology, F.H. Froes and I.L. Caplan (eds.), Warrendale, PA: TMS, pp. 141–148, 1993.

    Google Scholar 

  48. 48.

    Fujita, T., Ishikawa, M., Hashimoto, S., Minakawa, K., and Ouchi, C.: Fatigue and Fracture Toughness Properties in the Beta-Rich α+β Alloy SP-700, Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer and D.A. Koss (eds.), Warrendale, PA: TMS, pp. 297–307, 1993.

    Google Scholar 

  49. 49.

    Ogawa, A., Fukai, H., Minakawa, K., and Ouchi, C.: SP-700 Titanium Alloy Data Sheet, ibid., pp. 513–524 1993.

    Google Scholar 

Download references

Author information

Affiliations

Authors

About this article

Cite this article

Boyer, R.R. Titanium for aerospace: Rationale and applications. Adv Perform Mater 2, 349–368 (1995). https://doi.org/10.1007/BF00705316

Download citation

Key words

  • titanium alloys
  • titanium applications
  • alpha alloys
  • alpha/beta alloys
  • beta alloys
  • titanium landing gear
  • titanium springs
  • titanium/composite compatibility