Skip to main content
Log in

Equilibrium spectra of secondary cosmic-ray positrons in the galaxy and the spectrum of cosmic gamma-rays resulting from their annihilation

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A general formula is derived for calculating the γ-ray spectrum resulting from the annihilation of cosmic-ray positrons. This formula is used to calculate annihilation-γ-ray spectra from various equilibrium spectra of secondary galactic positrons. These spectra are then compared with the γ-ray spectra produced by other astrophysical processes.

Particular attention is paid to the form of the γ-ray spectrum resulting from the annihilation of positrons having kinetic energies below 5 keV. It is found that for mean leakage times out of the galaxy of less than 400 million years, most of the positrons annihilating near rest come from the β-decay of unstable nuclei produced in cosmic-ray p-C12, p-N14, and p-O16 interactions, rather than from pi-meson decay. It is further found that the large majority of these positrons will annihilate from an S state of positronium and that 3/4 of these will produce a three-photon annihilation continuum rather than the two-photon line spectrum at 0.51 MeV. The results of numerical calculations of the γ-ray fluxes from these processes are given. It is concluded that annihilation γ-rays from the galactic halo may remain forever masked by a metagalactic continuum. However, an 0.51 MeV line from the disk may well be detectable. It is most reasonable to assume that this line is formed predominantly by the annihilation of the CNO β-decay positrons. Under this assumption, the intensity of the line becomes a sensitive measure of the galactic cosmic-ray flux below 1000 MeV/nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1963,Astrophysical Quantities, 2nd ed., Athlone Press, Univ. of London, London.

    Google Scholar 

  • Anand, S.P.S., Daniel, andStephens: 1968. Preprint.

  • Audouze, J., Epherre, M., andReeves, H.: 1967, ‘Survey of Experimental Cross Sections for Photon Induced Spallation Reactions in He4, C12, N14 and O16’, inHigh Energy Nuclear Interactions in Astrophysics (ed. by B.S.P. Shen), Benjamin, New York.

    Google Scholar 

  • Berger, M. J. andSeltzer, S. M.: 1964, NASA Special Report SP-3012.

  • Cheshire, I. M.: 1964,Proc. Phys. Soc. 83, 227.

    Google Scholar 

  • Comstock, G. M., Fan, C. Y., andSimpson, J. A.: 1966,Astrophys. J. 146, 51.

    Google Scholar 

  • Deutsch, M.: 1953, ‘Annihilation of Positrons’, inProgress in Nuclear Physics, Vol. 3 (ed. by O. Frisch), Pergamon Press, London, pp. 131–158.

    Google Scholar 

  • Dirac, P. A. M.: 1930,Proc. Camb. Phil. Soc. 26, 361.

    Google Scholar 

  • Dovzhenko, O. I. andPomanskii, A. A.: 1964,Sov. Phys. JETP 18, 187.

    Google Scholar 

  • Fazio, G. G., Stecker, F. W., andWright, J. P.: 1966,Astrophys. J. 144, 611.

    Google Scholar 

  • Felten, J. E.: 1965,Phys. Rev. Letters 15, 1003.

    Google Scholar 

  • Felten, J. E., andMorrison, P.: 1966,Astrophys. J. 146, 686.

    Google Scholar 

  • Ginzburg, V. L. andSyrovatski, S. I.: 1964a,Sov. Phys. JETP,18, 245.

    Google Scholar 

  • Ginzburg, V. L. andSyrovatski, S. I.: 1964b,The Origin of Cosmic Rays, Macmillan, New York.

    Google Scholar 

  • Ginzburg, V. L. andSyrovatski, S. I.: 1964c,Usp. Fiz. Nauk 84, 201; translation:Sov. Phys. Uspekhi 7 (1965) 696.

    Google Scholar 

  • Gould, R. J.: 1965,Phys. Rev. Letters 15, 511.

    Google Scholar 

  • Gould, R. J.: 1967,Amer. J. Phys. 35, 376.

    Google Scholar 

  • Gould, R. J. andBurbidge, G. R.: 1963,Astrophys. J. 138, 969.

    Google Scholar 

  • Hartman, R. C.: 1967,Astrophys. J. 150, 371.

    Google Scholar 

  • Hayakawa, S. andKitao, K.: 1956,Prog. Theor. Phys. 16, 139.

    Google Scholar 

  • Hayakawa, S., Okuda, H., Tanaka, Y., andYamamoto, Y.: 1964,Prog. Theor. Phys. Suppl. (Japan) 30, 153–203.

    Google Scholar 

  • Heitler, W.: 1960,The Quantum Theory of Radiation, Oxford University Press, London.

    Google Scholar 

  • Hoyle, F.: 1965,Phys. Rev. Letters 15, 131.

    Google Scholar 

  • Jones, F. C.: 1963,J. Geophys. Res. 68, 4399.

    Google Scholar 

  • Metzger, A. E., Anderson, E. C., Van Dilla, M. A., andArnold, J. R.: 1964,Nature,204, 766.

    Google Scholar 

  • Morrison, P.: 1961, inHandbuch der Physik 46-1, Springer, Berlin.

    Google Scholar 

  • Ore, A. andPowell, J. L.: 1949,Phys. Rev. 75, 1696.

    Google Scholar 

  • Pollack, J. B. andFazio, G. G.: 1963,Phys. Rev. 313, 2684.

    Google Scholar 

  • Ramaty, R. andLingenfelter, R. E.: 1966a,J. Geophys. Res. 71, 3687.

    Google Scholar 

  • Ramaty, R. andLingenfelter, R. E.: 1966b,Phys. Rev. Letters 17, 1230.

    Google Scholar 

  • Shen, C. S.: 1967,Phys. Rev. Letters 19, 399.

    Google Scholar 

  • Shen, C. S. andBerkey, G.: 1968,Astrophys. J. 151, 895.

    Google Scholar 

  • Silk, J.: 1968,Astrophys. J. Letters 151, L19.

    Google Scholar 

  • Stecker, F. W.: 1967a, Smithsonian Astrophys. Obs. Spec. Rpt. No. 260.

  • Stecker, F. W.: 1967b, Smithsonian Astrophys. Obs. Spec. Rpt. No. 262.

  • Stokes, G. A., Partridge, R. B., andWilkinson, D. T.: 1967,Phys. Rev. Letters,19, 1199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecker, F.W. Equilibrium spectra of secondary cosmic-ray positrons in the galaxy and the spectrum of cosmic gamma-rays resulting from their annihilation. Astrophys Space Sci 3, 579–599 (1969). https://doi.org/10.1007/BF00704862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00704862

Keywords

Navigation