Effects of environmental conditions on production of xylitol byCandida boidinii

  • E. Vandeska
  • S. Amartey
  • S. Kuzmanova
  • T. Jeffries


Candida boidinii NRRL Y-17213 produced more xylitol thanC. magnolia (NRRL Y-4226 and NRRL Y-7621),Debaryomyces hansenii (C-98 M-21, C-56 M-9 and NRRL Y-7425), orPichia (Hansenula) anomala (NRRL Y-366). WithC. boidinii, highest xylitol productivity was at pH 7 but highest yield was at pH 8, using 5 g urea and 5 g Casamino acids/I. Decreasing the aeration rate decreased xylose consumption and cell growth but increased the xylitol yield. When an initial cell density of 5.1 g/l was used instead of 1.3 g/l, xylitol yield and the specific xylitol production rate doubled. Substrate concentration had the greatest effect on xylitol production; increasing xylose concentration 7.5-fold (to 150 g/l) gave a 71-fold increase in xylitol production (53 g/l) and a 10-fold increase in xylitol/ethanol ratio. The highest xylitol yield (0.47 g/g), corresponding to 52% of the theoretical yield, was obtained with 150 g xylose/l after 14 days. Xylose at 200 g/l inhibited xylitol production.

Key words

Candida boidinii xylitol production xylose fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AminoffC., VanninenE. & DotyT.E. 1978 The occurrence, manufacture and properties of xylitol. InXylitol, ed CounsellJ.N., pp. 1–9. London: Applied Science.Google Scholar
  2. BarbosaM.F.S., DeMedeirosM.B., DeMancilhaI.M., SchneiderH. & LeeH. 1988 Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii.Journal of Industrial Microbiology 3, 241–251.Google Scholar
  3. BarnettJ.A., PayneR.W. & YarrowD. 1990Yeasts: Characteristics and Identification, 2nd edn. New York: Cambridge University Press.Google Scholar
  4. DahiyaJ.S. 1991 Xylitol production byPetromyces albertensis grown on medium containingd-xylose.Canadian Journal of Microbiology 37, 14–18.Google Scholar
  5. GongC.S., ChenL.F. & TsaoG.T. 1981 Quantitative production of xylitol fromd-xylose by a high xylitol producing yeast mutantCandida tropicalis HXP2.Biotechnology Letters 3, 130–135.Google Scholar
  6. HallbornJ., WalfridsoonM., AiraksinenU., OjamoH., Hahn-HägerdalB., PenttilaM. & KeränenS. 1991 Xylitol production by recombinantSaccharomyces cerevisiae.Biotechnology 9, 1090–1095.Google Scholar
  7. JeffriesT.W. 1983 Effects of nitrate on fermentation of xylose and glucose byPachysolen tannophilus.Biotechnology 1, 503–506.Google Scholar
  8. MäkinenK.K. 1989 Latest dental studies on xylitol and mechanism of action of xylitol in caries limitation. InSweeteners, eds NaborsL.O. & GelardiR.C., pp. 331–363. New York: Marcel Dekker.Google Scholar
  9. MeyrialV., DelgenesJ.P., MolettaR. & NavarroJ.M. 1991 Xylitol production fromd-xylose byCandida guillermondii: fermentation behaviour.Biotechnology Letters 11, 281–286.Google Scholar
  10. RoseiroJ.C., PeitoM.A., GirioF.M. & Amaral-CollaçoM.T. 1991 The effects of oxygen transfer coefficient and substrate concentration on the xylose fermentation byDebaryomyces hansenii.Archives of Microbiology 156, 484–490.Google Scholar
  11. SliningerP.J., BolenP.L. & KurtzmanC.P. 1987Pachysolen tannophilus: properties and process consideration for ethanol production fromd-xylose.Enzyme and Microbial Technology 9, 5–15.Google Scholar
  12. SreenathH.K., ChapmanT.W. & JeffriesT.W. 1986 Ethanol production fromd-xylose in batch fermentation withCandida shehatae: process variables.Applied Microbiology and Biotechnology 24, 294–299.Google Scholar
  13. VongsuvanlertV. & TaniY. 1989 Xylitol production by a methanol yeast,Candida boidinii (Kloeckera sp.) No. 2201.Journal of Fermentation Technology 67, 35–39.Google Scholar
  14. YoshitakeJ., ObiwaH. & ShimamuraM. 1971 Production of polyalcohol byCorynebacterium sp. Part 1. Production of pentitol from aldopentose.Agricultural and Biological Chemistry 35, 905–911.Google Scholar
  15. YoshitakeJ., ShimamuraM., IshizakiH. & IrieY. 1976 Xylitol production byEnterobacter liquefaciens.Agricultural and Biological Chemistry 40, 1493–1503.Google Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1995

Authors and Affiliations

  • E. Vandeska
  • S. Amartey
  • S. Kuzmanova
  • T. Jeffries

There are no affiliations available

Personalised recommendations