Skip to main content
Log in

Effect of internal excitation on the collision-induced dissociation and reactivity of Co +2

  • Articles
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The kinetic energy dependence of collision-induced dissociation (CID) of dicobalt ion (Co +2 ) with He, Ar, and Xe has been investigated using guided ion-beam mass spectrometry. The change in efficiency of CID as the target gas is changed is in general agreement with previous CID studies of other systems: the cross section with Ar is ∼0.5 that with Xe, and no product ions are found with He. By varying the conditions under which the reactant ions are formed, the degree of internal excitation of the dicobalt ions is changed. The internal energies can be characterized by a Maxwell-Boltzmann distribution. We find that CID and reactions with O2 and CO are very sensitive to Co +2 internal energy. The bond-dissociation energy derived from this work is Do(Co +2 )=2.75±0.10 eV (63.4±2.3 kcal/mol). The Co +2 results are compared with a previous study of Fe +2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Morse (1986).Chem. Rev. 86, 1049.

    Google Scholar 

  2. J. M. Alford, F. D. Weiss, R. T. Laaksonen, and R. E. Smalley (1986).J. Phys. Chem. 90, 4480.

    Google Scholar 

  3. J. L. Elkind, F. D. Weiss, J. M. Alford, R. T. Laaksonen, and R. E. Smalley (1988).J. Chem. Phys. 88, 5215.

    Google Scholar 

  4. M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley (1985).Rev. Sci. Instrum. 56, 2123.

    Google Scholar 

  5. L. Hanley, S. A. Ruatta, and S. L. Anderson (1987).J. Chem. Phys. 87, 260.

    Google Scholar 

  6. L. Hanley and S. L. Anderson (1985).Chem. Phys. Lett. 122, 410.

    Google Scholar 

  7. L. Hanley and S. L. Anderson (1986).Chem. Phys. Lett. 129, 429.

    Google Scholar 

  8. D. B. Jacobson and B. S. Freiser (1984).J. Am. Chem. Soc. 106, 5351.

    Google Scholar 

  9. D. B. Jacobson and B. S. Freiser (1986).J. Am. Chem. Soc. 108, 27.

    Google Scholar 

  10. K. Ervin, S. K. Loh, N. Aristov, and P. B. Armentrout (1983).J. Phys. Chem. 87, 3593.

    Google Scholar 

  11. S. C. Richtsmeier, E. K. Parks, K. Liu, L. G. Pobo, and S. J. Riley (1985).J. Chem. Phys. 82, 3659.

    Google Scholar 

  12. M. R. Zakin, R. O. Brickman, D. M. Cox, and A. Kaldor (1988).J. Chem. Phys. 88, 5943.

    Google Scholar 

  13. S. K. Loh, D. A. Hales, and P. B. Armentrout (1986).Chem. Phys. Lett. 129, 527.

    Google Scholar 

  14. S. K. Loh, L. Lian, D. A. Hales, and P. B. Armentrout (1988).J. Phys. Chem. 92, 4009.

    Google Scholar 

  15. M. R. Zakin, R. O. Brickman, D. M. Cox, and A. Kaldor (1988).J. Chem. Phys. 88, 3555.

    Google Scholar 

  16. L.-S. Zheng, P. J. Brucat, C. L. Pettiette, S. Yang, and R. E. Smalley (1985).J. Chem. Phys. 83, 4273.

    Google Scholar 

  17. P. J. Brucat, L.-S. Zheng, C. L. Pettiette, S. Yang, and R. E. Smalley (1986).J. Chem. Phys. 84, 3078.

    Google Scholar 

  18. P. J. Brucat, C. L. Pettiette, S. Yang, L.-S. Zheng, M. J. Craycraft, and R. E. Smalley (1986).J. Chem. Phys. 85, 4747.

    Google Scholar 

  19. K. M. Ervin and P. B. Armentrout (1985).J. Chem. Phys. 83, 166.

    Google Scholar 

  20. S. K. Loh, D. A. Hales, L. Lian, and P. B. Armentrout (1989).J. Chem. Phys. 90, 5466.

    Google Scholar 

  21. N. R. Daly (1959).Rev. Sci. Instrum. 31, 264.

    Google Scholar 

  22. R. E. Winters and R. W. Kiser (1965).J. Phys. Chem. 69, 1618.

    Google Scholar 

  23. C. Rebick and R. D. Levine (1973).Chem. Phys. 58, 3942.

    Google Scholar 

  24. E. K. Parks, A. Wagner, and S. Wexler (1973).J. Chem. Phys. 58, 5502.

    Google Scholar 

  25. R. D. Levine and R. B. Bernstein (1971).Chem. Phys. Lett. 11, 552.

    Google Scholar 

  26. T. F. Moran and D. C. Fullerton (1971).J. Chem. Phys. 54, 5231.

    Google Scholar 

  27. W. B. Maier II (1964).J. Chem. Phys. 41, 2174.

    Google Scholar 

  28. R. Viswanathan, L. M. Raff, and D. L. Thompson (1983).J. Chem. Phys. 79, 2857.

    Google Scholar 

  29. N. Aristov and P. B. Armentrout (1986).J. Phys. Chem. 90, 5135.

    Google Scholar 

  30. S. K. Loh, L. Lian, and P. B. Armentrout (1989).J. Am. Chem. Soc. 111, 3167.

    Google Scholar 

  31. C. Lifshitz, R. L. C. Wu, T. O. Tiernan, and D. T. Terwilliger (1978).J. Chem. Phys. 68, 247.

    Google Scholar 

  32. E. W. Rothe and R. B. Bernstein (1959).J. Chem. Phys. 31, 1619.

    Google Scholar 

  33. D. A. Hales, L. Lian, and P. B. Armentrout (1990, in preparation).

  34. V. L. Talrose, P. S. Vinogradov, and I. K. Larin,in M. T. Bowers (ed.),Gas Phase Ion Chemistry, Vol. 1 (Academic Press, New York, 1979), p. 305.

    Google Scholar 

  35. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard (1988).J. Phys. Chem. Ref. Data 17 (suppl. 1), 599.

    Google Scholar 

  36. A. Kant and B. Strauss (1964).J. Chem. Phys. 41, 3806.

    Google Scholar 

  37. I. Shim and K. Gingerich (1983).J. Chem. Phys. 78, 5693.

    Google Scholar 

  38. D. G. Leopold and W. C. Lineberger (1986).J. Chem. Phys. 85, 51.

    Google Scholar 

  39. E. A. Rohlfing, D. M. Cox, and A. Kaldor (1984).J. Chem. Phys. 81, 3846.

    Google Scholar 

  40. J. Sugar and C. Corliss (1985).J. Phys. Chem. Ref. Data 14 (suppl. 2), 1.

    Google Scholar 

  41. K. Hilpert (1979).Ber. Bunsenges. Phys. Chem. 83, 161.

    Google Scholar 

  42. M. D. Morse, G. P. Hansen, P. R. R. Langridge-Smith, L.-S. Zheng, M. E. Geusic, D. L. Michalopoulos, and R. E. Smalley (1984).J. Chem. Phys. 80, 5400.

    Google Scholar 

  43. D. B. Jacobson and B. S. Freiser (1984).J. Am. Chem. Soc. 106, 4623.

    Google Scholar 

  44. P. B. Armentrout (1986).Proc. SPIE 620, 38.

    Google Scholar 

  45. M. F. Jarrold, A. J. Illies, and M. T. Bowers (1985).J. Am. Chem. Soc. 107, 7339.

    Google Scholar 

  46. D. R. Bidnosti and N. S. McIntyre (1970).Can. J. Chem. 48, 593.

    Google Scholar 

  47. R. J. McKinney and D. A. Pensak (1979).Inorg. Chem. 18, 3413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hales, D.A., Armentrout, P.B. Effect of internal excitation on the collision-induced dissociation and reactivity of Co +2 . J Clust Sci 1, 127–142 (1990). https://doi.org/10.1007/BF00703589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00703589

Key words

Navigation