Advertisement

Relation between the activation energy of the electrical conduction in organic semiconductors and their first excited singlet state energies

  • P. K. Narasimharaghavan
  • Hari Om Yadav
  • K. Shankar
  • T. S. Varadarajan
Papers

Abstract

An examination of the darkconductivity of seven substituted anthraquinones show that these compounds are high resistance semiconductors. There is a significant increase in the conductivity of the compounds by the introduction of polar groups to the anthraquinone molecule. There exists a correspondence between the thermal activation energy of the darkconductivity (ΔED) and the energy of the first excited singlet state (1E). The search for a correlation between the thermal activation energy of the darkconductivity and the energy of the triplet state (3E) was unsuccessful.

Keywords

Activation Energy Electrical Conduction Electronic Material State Energy High Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. EULER, G. RYHINDER and F. SCHOLZ,Z. Angew. Phys. 24 (1967) 32.Google Scholar
  2. 2.
    H. MEIER, W. ALBRECHT and U. TSCHIRWITZ,Ber. Bunsenges. Phys. Chem. 74 (1970) 938.Google Scholar
  3. 3.
    H. MEIER,Angew. Chem. 77 (1965) 633;Angew. Chem. Internat. Edit. 4 (1965) 619.Google Scholar
  4. 4.
    B. ROSENBERG, R. J. HECK and K. AZIZ,J. Opt. Soc. Amer. 54 (1964) 1018.Google Scholar
  5. 5.
    S. GRAMMATICA and J. MORT,Appl. Phys. Lett. 38 (1981) 445.Google Scholar
  6. 6.
    A. KAKUTA, Y. MORI, S. TAKANO, M. SAWADA and I. SHIBUYA,J. Imag. Technol. 11 (1985) 7.Google Scholar
  7. 7.
    K. J. HALL, J. S. BONHAM and L. E. LYONS,Aus. J. Chem. 31 (1978) 1661.Google Scholar
  8. 8.
    S. NESPUREK, Czech.J. Phys. 34 (1984) 222.Google Scholar
  9. 9.
    H. MEIER, U. TSCHIRWITZ, E. ZIMMERHACKL, W. ALBRECHT and G. ZEITLER,J. Phys. Chem. 81 (1977) 712.Google Scholar
  10. 10.
    S. Z. ROGINSKII and M. M. SAKHAROV,Russ. J. Phys. Chem. 42 (1968) 696.Google Scholar
  11. 11.
    H. MEIER, W. ALBRECHT and E. ZIMMERHACKL,Syn. Met. 11 (1985) 333.Google Scholar
  12. 12.
    A. T. TWAROWSKI,J. Chem. Phys. 76 (1982) 2640.Google Scholar
  13. 13.
    H. MEIER, W. ALBRECHT, D. WOHRLE and A. JAHN,J. Phys. Chem. 90 (1986) 6349.Google Scholar
  14. 14.
    N. A. DIMOND and T. K. MUKERJEE,Discuss. Farad. Soc. 51 (1971) 1.Google Scholar
  15. 15.
    H. INOKUCHI, Y. MARUYAMA and H. AKAMATU in: Symposium on Electrical Conductivity in Organic Solids. (Interscience, New York, 1961) pp. 69–76;Bull. Chem. Soc. Japan 34 (1961) 1093.Google Scholar
  16. 16.
    H. MEIER, “Spectral Sensitization” (Focal Press, New York, 1968).Google Scholar
  17. 17.
    B. HEILMEIER, G. W. WARFIELD, S. E. HARRISON and J. ASSOUR,Phys. Rev. Lett. 8 (1962) 309.Google Scholar
  18. 18.
    H. MEIER, W. ALBRETCHT and U. TSCHIRWITZ,Angew. Chem. Internat. Edit. 11 (1972) 1031.Google Scholar
  19. 19.
    H. MEIER,Z. Phys. Chem. (Leipzig)208 (1958) 325.Google Scholar
  20. 20.
    P. E. FIELDING and A. G. MACKAY,Aust. J. Chem. 17 (1964) 750.Google Scholar
  21. 21.
    H. MEIER, Photochem.Photobiol. 16 (1972) 219.Google Scholar
  22. 22.
    F. GUTMAN and L. E. LYONS, “Organic Semiconductors” (Wiley, New York, 1967) pp. 363.Google Scholar
  23. 23.
    D. D. ELEY,J. Polm. Sci. Part C 17 (1967) 73.Google Scholar
  24. 24.
    N. PARKYNS and A. R. UBBELOHDE,J. Chem. Soc. (1960) 4188.Google Scholar
  25. 25.
    D. C. NORTHROP and O. SIMPSON,Proc. Roy. Soc. A234 (1956) 124.Google Scholar
  26. 26.
    D. D. ELEY and D. I. SILVERY,Trans. Farad. Soc. 58 (1962) 405.Google Scholar
  27. 27.
    J. N. MAYCOK, V. R. PAI VERNEKAR and W. LOCHTE,Phys. Stat. Sol. 35 (1969) 843.Google Scholar
  28. 28.
    O. MAIOR, M. MULLER and I. MIHAI,Rev. Roum. Phys. 16 (1971) 221.Google Scholar
  29. 29.
    H. M. DONNINI,J. Phys. Soc. Japan 32 (1972) 455.Google Scholar
  30. 30.
    M. HEIDER and J. NEEL,J. Chim. Phys. 70 (1973) 547.Google Scholar
  31. 31.
    T. TANAKA,J. Appl. Phys. 44 (1973) 2430.Google Scholar
  32. 32.
    C. S. ANITHKUMAR and N. UMAKANTHA,Bull. Electrochem. 1 (1985) 68.Google Scholar
  33. 33.
    T. S. VARADARAJAN and P. K. NARASIMHARAGHAVAN,Proc. Solidstate Phys. Symp. (India)27C (1984) 192.Google Scholar
  34. 34.
    T. S. VARADARAJAN and P. K. NARASIMHARAGHAVAN,Proc. Solidstate Phys. Symp. (India)30C (1987) 420.Google Scholar
  35. 35.
    HARIO OM YADAV, P. K. NARASIMHARAGHAVAN and T. S. VARADARAJAN,Proc. Solidstate Phys. Symp. (India)31C (1988) 351.Google Scholar
  36. 36.
    P. K. NARASIMHARAGHAVAN, Ph.D. Thesis, Bombay University, India, 1987.Google Scholar
  37. 37.
    P. K. NARASIMHARAGHAVAN and T. S. VARADARAJAN,Syn. Metals 43 (1991) 2939.Google Scholar
  38. 38.
    H. SUZIKI, “Electronic Absorption Spectra and Geometry of Organic Molecules” (Academic Press, New York, 1967) p. 93.Google Scholar
  39. 39.
    G. S. EGERTON and A. G. ROACH,J. Soc. Dyers and Colorists 74 (1958) 408.Google Scholar
  40. 40.
    J. J. MORAN and H. I. STONEHILL,J. Chem. Soc. (1957) 765.Google Scholar
  41. 41.
    G. S. EGERTON, N. E. N. ASSAAD and U. D. UFFINDELL,J. Soc. Dyers and Colorists 83 (1967) 45.Google Scholar
  42. 42.
    G. S. EGERTON and N. E. N. ASSAAD, ibid.83 (1967) 85.Google Scholar
  43. 43.
    G. H. GILLES and R. I. SINCLAIR, ibid.88 (1972) 109;ibid. 89 (1973) 56.Google Scholar
  44. 44.
    A. H. BERRIE, J. E. McKLLER and E. YOUNG,Chem. and Ind. (1973) 791.Google Scholar
  45. 45.
    P. BENTLEY, J. F. McKELLER and G. O. PHILLIPS,Chem. and Ind. (1974) 919.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • P. K. Narasimharaghavan
    • 1
  • Hari Om Yadav
    • 1
  • K. Shankar
    • 1
  • T. S. Varadarajan
    • 1
  1. 1.Centre for Advanced Studies in Applied Chemistry, Department of Chemical TechnologyUniversity of BombayMatungaIndia

Personalised recommendations