Advertisement

Human Genetics

, Volume 80, Issue 2, pp 157–160 | Cite as

Prevalence and molecular heterogeneity of alfa+thalassemia in two tribal populations from Andhra Pradesh, India

  • R. Fodde
  • M. Losekoot
  • M. H. van den Broek
  • M. Oldenburg
  • N. Rashida
  • A. Schreuder
  • J. T. Wijnen
  • P. C. Giordano
  • N. V. S. Nayudu
  • P. Meera Khan
  • L. F. Bernini
Original Investigations

Summary

We describe here the screening of a small group of apparently healthy individuals belonging to the tribal communities of Koya Dora and Konda Reddi. A remarkably high incidence of deletion and nondeletion α+ thalassemia mutants has been found with allele frequencies and distributions characteristic to each tribe. We have confirmed the strict relationship between Hb S levels and the number of α globin genes in double heterozygotes for the S gene and α thalassemia. In this population sample we did not find either heterozygous carriers of α0 thalassemia (deletion of both alpha genes in “cis”) or individuals showing hemolytic anemia due to inactivation of three α-globin genes (Hb H disease). Selection by malaria is most probably responsible for the prevalence of the various α+ thalassemia haplotypes among the two tribal populations of Andhra Pradesh.

Keywords

Internal Medicine Anemia Allele Frequency Malaria Small Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brittenham G, Lozoff B, Harris JW, Mayson SM, Miller A, Huisman THJ (1979) Sickle cell anemia and trait in southern India: further studies. Am J Hematol 6:107Google Scholar
  2. Brittenham G, Lozoff B, Harris JW, Kan YW, Dozy AM, Nayudu NVS (1980) Alpha globin gene number: population and restriction endonuclease studies. Blood 55:706–708Google Scholar
  3. De Jong WW, Meera Khan P, Bernini LF (1975) Hemoglobin Koya Dora: high frequency of a chain termination mutant. Am J Hum Genet 27:81–90Google Scholar
  4. Flint J, Hill AVS, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW, Bana-Koiri J, Bathia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB (1986) High frequencies of α-thalassemia are the result of natural selection of malaria. Nature 321:744–750Google Scholar
  5. Harano K, Harano T, Kutlar F, Huisman THJ (1985) Gamma-globin triplication and quadruplication in Japanese newborns. FEBS Lett 190:45–49Google Scholar
  6. Higgs DR, Weatherall DJ (1983) Alpha thalassemia. Curr Top Hematol 4:37–97Google Scholar
  7. Higgs DR, Aldridge BE, Lamb J, Clegg JB, Weatherall DJ, Hayes RJ, Grandison Y, Lowrie Y, Mason KP, Serjeant BE, Serjeant GR (1982) The interaction of alpha thalassemia and homozygous sickle cell disease. N Engl J Med 306:1441–1446Google Scholar
  8. Higgs DR, Hill AVS, Bowden DK, Weatherall DJ, Clegg JB (1984) Independent recombination events between the duplicated human α globin genes; implications for their concerted evolution. Nucleic Acids Res 12:6965–6977Google Scholar
  9. Hundrieser J, Deka R, Gogoi BC (1987) α-Thalassemia in the Kachari population of Assam (India). Hemoglobin 11:517–519Google Scholar
  10. Liebhaber SA, Cash FE, Ballas SK (1986) Human α-globin expression. The dominant role of the α2 locus in mRNA and protein synthesis. J Biol Chem 261:15327–15333Google Scholar
  11. Maeda N, McEvoy SM, Harris HF, Huisman THJ, Smithies O (1986) Polymorphisms in the human haptoglobin gene cluster: chromosomes with multiple haptoglobin-related (Hpr) genes. Proc Natl Acad Sci USA 83:7395–7399Google Scholar
  12. Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  13. Saha N, Banerjee B (1973) Haemoglobinopathies in the Indian subcontinent. Acta Genet Med Gemellol (Roma) 22:117Google Scholar
  14. Shaeffer JR, Kingston RE, McDonald MJ, Bunn HF (1978) Competition of normal β chains and sickle hemoglobin β chains for α chains as a post translational control mechanism. Nature 276:631–632Google Scholar
  15. Smithies O (1965) Characterization of genetic variants of blood proteins. Vox Sang 10:359–362Google Scholar
  16. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  17. Sukumaran PK (1983) Gamma thalassemia resulting from the deletion of a γ-globin gene. Nucleic Acids Res 11:4635–4643Google Scholar
  18. Trent RJ, Mickleson KNP, Wilkinson T, Yakas J, Dixon MW, Hill PJ, Kronenberg H (1986) Globin genes in Polynesians have many rearrangements including a recently described γγγγ/. Am J Hum Genet 39:350–360Google Scholar
  19. Weatherall DJ, Clegg JB (1981) The thalassemia syndromes, 3rd edn. Blackwell, Oxford LondonGoogle Scholar
  20. Weening RS, Roos D, Loos JA (1974) Oxygen consumption of phagocytising cells in human leucocyte and granulocyte preparations: a comparative study. J Lab Clin Med 83:570–576Google Scholar
  21. Yenchitsomanus PT, Summers KM, Bhatia KK, Cattani J, Board PG (1985) Extremely high frequencies of α-globin deletion in Madang and on Kar Kar island, Papua New Guinea. Am J Hum Genet 37:778–784Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • R. Fodde
    • 1
  • M. Losekoot
    • 1
  • M. H. van den Broek
    • 1
  • M. Oldenburg
    • 1
  • N. Rashida
    • 1
  • A. Schreuder
    • 1
  • J. T. Wijnen
    • 1
  • P. C. Giordano
    • 1
  • N. V. S. Nayudu
    • 2
  • P. Meera Khan
    • 1
  • L. F. Bernini
    • 1
  1. 1.Department of Human Genetics, Sylvius LaboratoriaUniversity of LeidenLeidenThe Netherlands
  2. 2.Department of MedicineRangaraya Medical CollegeKakinadaIndia

Personalised recommendations