Advertisement

Journal of Atmospheric Chemistry

, Volume 16, Issue 2, pp 179–199 | Cite as

A global three-dimensional model of the stratospheric sulfuric acid layer

  • Amram Golombek
  • Ronald G. Prinn
Article

Abstract

We present the results of a theoretical study of the chemistry and circulation which maintains the lower stratospheric sulfuric acid (Junge) layer in nonvolcanically perturbed periods. We use a global three-dimensional chemical-dynamical model which includes production of SO2 from OCS, oxidation of SO2 to gaseous H2SO4, condensation-evaporation equilibrium of gaseous and particulate H2SO4, condensation growth of particulates as they enter the tropopause-upper troposphere region, and particulate rainout in the lower troposphere. We have compared our results with the NIMBUS 7 SAM II and AEM-2 SAGE stratospheric aerosol extinction data for periods when the stratosphere was not perturbed by recent volcanic eruptions. The model simulates the general behavior of stratospheric aerosol extinction including the existence of a polar tropopause enhancement in this extinction. Agreement is good in the tropics but there is a tendency for the model in high latitudes to significantly overpredict aerosol extinction above 15 km due perhaps to an overly vigorous predicted circulation or to inadequate knowledge of particle sizes. We identify two major sources for stratospheric H2SO4: one is upwardly transported and photodissociated OCS and the other is upwardly transported SO2. The importance of upwardly transported SO2 is a new and significant result whose validity is dependent on the realism of the vertical transport and chemical loss of SO2 above 9.3 km in the model. We have studied the roles of chemical sources, circulation, and sinks in the global sulfur compound budgets and we find certain similarities in the behavior of H2SO4 and O3 in the stratosphere; each is chemically produced predominantly at lower latitudes in the stratosphere with poleward transport maximizing in the winter and spring months.

Key words

Stratospheric sulfuric acid layer aerosols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., 1971, Ultraviolet solar radiation related to mesospheric processes, in G. Fiocco (ed.),Mesospheric Models and Related Experiments, D. Reidel, Dordrecht, pp. 149–159.Google Scholar
  2. Andreae, M., 1985, The emission of sulfur to the remote atmosphere, in J. Gallowayet al. (eds.),The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, D. Reidel, Dordrecht, pp. 5–25.Google Scholar
  3. Bates, T., Cline, J., Gammon, R., and Kelly-Hansen, S., 1987, Regional and seasonal variations in the flux of dimethylsulfide to the atmosphere,J. Geophys. Res. 92, 2930–2938.Google Scholar
  4. Baulch, D., Cox, R., Hampson, R., Kerr, J., Trae, J., and Watson, R., 1980, Evaluated kinetic and photochemical data for atmospheric chemistry,J. Phys. Chem. Ref. Data 9, 295–471.Google Scholar
  5. Carroll, M., 1985, Measurements of OCS and CS2 in the free troposphere,J. Geophys. Res. 90, 10,483–10,486.Google Scholar
  6. Carroll, M., Heidt, L., Cicerone, R., and Prinn, R., 1986, OCS, H2S, and CS2 fluxes from a salt water marsh,J. Atmos. Chem. 4, 375–395.Google Scholar
  7. Charlson, R., Langner, J., Rodhe, H., Leovy, C., and Warren, C., 1991, Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols,Tellus 43AB, 152–163.Google Scholar
  8. Chatfield, R. and Crutzen, P., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors,J. Geophys. Res. 89, 7111–7132.Google Scholar
  9. Crutzen, P., 1976, The possible importance of CSO for the sulfate layer of the stratosphere,Geophys. Res. Lett. 3, 73–76.Google Scholar
  10. Cunnold, D., Alyea, F., and Prinn, R., 1980, Preliminary calculations concerning the maintenance of the zonal mean ozone distribution in the Northern Hemisphere,Pure Appl. Geophys. 118, 329–354.Google Scholar
  11. DeMore, W., Molina, M., Sanders, S., Golden, D., Hampson, R., Kurylo, M., Howard, C., and Ravishankara, A., 1990, Chemical kinetics and photochemical data for use in stratospheric modelling, JPL Pub. 90-1, NASA Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
  12. Dutsch, H., 1971, Photochemistry of atmospheric ozone,Adv. Geophys. 15, 219–322.Google Scholar
  13. Ferek, R. and Andreae, M., 1983, The supersaturation of carbonyl sulfide in surface waters of the Pacific ocean off Peru,Geophys. Res. Lett. 10, 393–396.Google Scholar
  14. Ferek, R., Chatfield, R., and Andreae, M., 1986, Vertical distribution of dimethyl sulfide in the marine atmosphere,Nature 320, 514–516.Google Scholar
  15. Goldan, P., Fall, R., Kuster, W., and Fehsenfeld, F., 1988, The uptake of COS by growing vegetation: a major tropospheric sink,J. Geophys. Res. 93, 14,186–14,192.Google Scholar
  16. Golombek, A. and Prinn, R., 1986, A global three-dimensional model of the circulation and chemistry of CFCl3, CF2Cl2, CH3CCl3, CCl4, and N2O,J. Geophys. Res. 91, 3985–4001.Google Scholar
  17. Golombek, A. and Prinn, R., 1989, Global 3-dimensional model calculations of the budgets and present-day atmospheric lifetimes of CF2ClCFCl2 (CFC-113) and CHClF2 (CFC-22),Geophys. Res. Lett. 16, 1153–1156.Google Scholar
  18. Herman, J. and Mentall, J., 1982, O2 absorption cross-section (187–225 nm) for stratospheric solar flux measurements,J. Geophys. Res. 87, 8967–8975.Google Scholar
  19. Jaeschke, W., Schmitt, R., and Georgii, H., 1976, Preliminary results of stratospheric SO2 measurements,Geophys. Res. Lett. 3, 517–519.Google Scholar
  20. Johnson, J., and Harrison, H., 1986, Carbonyl sulfide concentrations in the surface waters and above the Pacific ocean,J. Geophys. Res. 91, 7883–7888.Google Scholar
  21. Langner, J. and Rodhe, H., 1991, A global three-dimensional model of the tropospheric sulfur cycle,J. Atmos. Chem. 13, 225–263.Google Scholar
  22. Logan, J., Prather, M., Wofsy, S., and McElroy, M., 1981, Tropospheric chemistry: A global perspective,J. Geophys. Res. 86, 7210–7254.Google Scholar
  23. Lorenz, E., 1971, Ann-cycle time differencing scheme for stepwise numerical integration,Mon. Weather Rev. 99, 644–648.Google Scholar
  24. Maroulis, P., Torres, A., Goldberg, A., and Bandy, A., 1980, Atmospheric SO2 measurements on project GAMETAG,J. Geophys. Res. 85, 7345–7349.Google Scholar
  25. McCormick, M. P., 1981, SAM II Measurements of the polar stratospheric aerosol, Vol. 1, NASA Ref. Pub. 1081, NASA, Washington DC.Google Scholar
  26. McCormick, M. P., 1985, SAGE aerosol measurements, Vol. 1, NASA Ref. Pub. 1144, NASA, Washington DC.Google Scholar
  27. McCormick, M. P., 1987, SAGE aerosol measurements, Vol. 3, NASA Ref. Pub. 1173, NASA, Washington DC.Google Scholar
  28. McCormick, M. P. and Brandl, D., 1986, SAM II measurements of the polar stratospheric aerosol, Vol. 8, NASA Ref. Pub. 1165, NASA, Washington DC.Google Scholar
  29. Oort, A., and Rasmusson, E., 1971, Atmospheric circulation statistics, NOAA Professional Paper 5, NOAA, Washington DC.Google Scholar
  30. Pinnick, R., Rosen, R., and Hofmann, D., 1976, Stratospheric aerosol measurements III: optical model calculations,J. Atmos. Sci. 33, 304–314.Google Scholar
  31. Prinn, R., 1974, Venus: vertical transport rates in the visible atmosphere,J. Atmos. Sci. 31, 1691–1697.Google Scholar
  32. Prinn, R., 1988, Toward an improved global network for determination of tropospheric ozone climatology and trends,J. Atmos. Chem. 6, 281–298.Google Scholar
  33. Prinn, R. and Golombek, A., 1990, Global atmospheric chemistry of CFC-123,Nature 344, 47–49.Google Scholar
  34. Prinn, R., Cunnold, D., Simmonds, P., Alyea, F., Boldi, R., Crawford, A., Fraser, P., Gutzler, D., Hartley, D., Rosen, R., and Rasmussen, R., 1992, Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990,J. Geophys. Res. 97, 2445–2461.Google Scholar
  35. Prinn, R., Alyea, F., and Cunnold, D., 1978, Photochemistry and dynamics of the ozone layer,Ann. Rev. Earth Planet. Sci. 6, 43–74.Google Scholar
  36. Rasmussen, R., Khalil, M., and Hoyt, S., 1982, The oceanic source of carbonyl sulfide (OCS),Atmos. Environ. 16, 1591–1945.Google Scholar
  37. Russell, J., Swissler, J., McCormick, M., Chu, W., Livingston, J., and Pepin, T., 1981, Satellite and correlative measurements of the stratospheric aerosol, I. An optical method for data conversions,J. Atmos. Sci. 38, 1279–1294.Google Scholar
  38. Steele, H. and Hamill, P., 1981, Effects of temperature and humidity on the growth and optical properties of sulfuric acid-water droplets in the stratosphere,J. Aerosol Sci. 12, 517–528.Google Scholar
  39. Sze, N. and Ko, M., 1980, Photochemistry of COS, CS2, (CH3)2S, and H2S: Implications for the atmospheric sulfur cycle,Atmos. Environ. 14, 1223–1239.Google Scholar
  40. Taylor, G., McLaughlin, S., Shriner, D., and Selvidge, W., 1983, The flux of sulfur-containing gases to vegetation,Atmos. Environ. 17, 789–796.Google Scholar
  41. Toon, O., Kasting, J., Turco, R., and Liu, M., 1987, The sulfur cycle in the marine atmosphere,J. Geophys. Res. 92, 943–963.Google Scholar
  42. Torres, A., Maroulis, P., Goldberg, A., and Bandy, A., 1980, Atmospheric OCS measurements on project GAMETAG,J. Geophys. Res. 85, 7357–7360.Google Scholar
  43. Turco, R., Cicerone, R., Inn, E., and Capone, L., 1981a, Long wavelength carbonyl sulfide photodissociation,J. Geophys. Res. 86, 5372–5377.Google Scholar
  44. Turco, R., Toon, O., Hamill, P., and Whitten, R., 1981b, Effects of meteoric debris on stratospheric aerosols and gases,J. Geophys. Res. 86, 1113–1128.Google Scholar
  45. Turco, R., Whitten, R., and Toon, O., 1982, Stratospheric aerosols: Observation and theory,Rev. Geophys. Space Phys. 20, 233–279.Google Scholar
  46. Van Valin, C., Berresheim, H., Andreae, M., and Luria, M., 1987, Dimethyl sulfide over the Western Atlantic ocean,Geophys. Res. Lett. 14, 715–718.Google Scholar
  47. Yung, Y. and DeMore, W., 1982, Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution,Icarus 51, 199–247.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Amram Golombek
    • 1
    • 2
  • Ronald G. Prinn
    • 1
  1. 1.Center for Global Change ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Environmental SciencesIsrael Institute for Biological ResearchNess-ZionaIsrael

Personalised recommendations