Skip to main content
Log in

Tropospheric ozone chemistry. The impact of cloud chemistry

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The effect of clouds and cloud chemistry on tropospheric ozone chemistry is tested out in a two-dimensional channel model covering a latitudinal band from 30 to 60° N. Three different methods describing how clouds affect gaseous species are applied, and the results are compared. The three methods are:

  • •A first order parameterization scheme for the removal of sulphur and other soluble gases by liquid droplets.

  • •A parameterization scheme for SO2, O3, and H2O2 removal is constructed. The scheme is based on the solubility of gases in liquid droplets, cycling times of air masses between clouds and cloud free areas and on the chemical interaction of SO2 with H2O2 and O3 in the liquid phase.

  • •Gas-aqueous-phase interactions and aqueous-phase chemical reactions are included in the reaction scheme for a number of components in areas where clouds are present.

In all three methods, a full gas-phase chemistry scheme is used. Particular emphasis is given to the study of how the ozone and hydrogen peroxide levels are affected. Significant changes in the distributions are found when aqueous-phase chemical reactions are included. The result is loss of ozone in the aqueous phase, with pronounced reductions in ozone levels in the middle and lower troposphere. Ozone levels are reduced by 10 to 30% with the largest reductions in the remote middle troposphere, bringing the values in better agreement with observations. Changes in H2O2 are harder to predict. Although, in one case study, hydrogen peroxide is produced within the aqueous phase, concentrations are mostly comparable or even lower than in the other cases. Hydrogen peroxide levels are, however, shown to be very pH sensitive. pH values around 5 seem to favour high H2O2 levels. High H2O2 concentrations may be found particularly in the upper part of the clouds under favourable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III,J. Phys. Chem. Ref. Data 18, 881–1097.

    Google Scholar 

  • Atkinson, R., 1990, Review article: Gas phase chemistry of organic compounds: a review,Atmos. Environ. 24A, 1–41.

    Google Scholar 

  • Bielski, B. H. J., 1978, Reevaluation of the spectral and kinetic properties of HO2 and O 12 free radicals,Photochem. Photobiol. 28, 645–649.

    Google Scholar 

  • Bojkov, R. D., 1986, Surface ozone during the second half of the nineteenth century,J. Chem. Appl. Meteorol. 25, 343–352.

    Google Scholar 

  • Chameides, W. L., 1984, The photochemistry of a remote stratiform cloud,J. Geophys. Res. 89, 4739–4755.

    Google Scholar 

  • Chameides, W. L. and Davis, D. D., 1982, The free radical chemistry of cloud droplets and its impact upon the composition of rain,J. Geophys. Res. 87, 4863–4877.

    Google Scholar 

  • Chameides, W. L. and Davis, D. D., 1983, Aqueous phase source of formic acid in clouds,Nature 304, 427–429.

    Google Scholar 

  • Chang, J. S., 1985, The NCAR eulerian regional acid deposition model, NCAR Technical Note NCAR/TN-256 + STR, Boulder.

  • Chatfield, R. B. and Crutzen, P., 1984, Sulfur dioxide in remote oceanic air. Cloud transport of reactive precursors,J. Geophys. Res. 89, 7111–7132.

    Google Scholar 

  • CRC Handbook of Chemistry and Physics, 1987, 67th edition, CRC Press, Boca Raton, Florda.

  • Crutzen, P. J., 1988, Tropospheric ozone: An overview, in I. S. A. Isaksen (ed.),Tropospheric Ozone, D. Reidel, Dordrecht, pp. 3–32.

    Google Scholar 

  • Deutscher Wetterdienstes monotskarten des niederslags für die ganze erde, 1976, Berichte nr. 139, band 18, Offenbach.

  • Dickerson, R. R., Gockel, B. S., Luke, W. T., McNamara, D. P., Nunnermacker, L. J., Pickering, K. E., Greenberg, J. P., and Zimmerman, P. R., 1989, Profiles of photochemically active trace gases in the troposphere, in R. D. Bojkov and P. Fabian (eds.),Proc. 4th Quadrennial Ozone Symposium, A. Depak Publishing, pp. 463–467.

  • Feister, U. and Warmbt, 1985, Long-term surface ozone increase at Arkona, in C. S. Zerefos and A. Ghazi (eds.),Proc. 3rd Quadrennial Ozone Symposium, D. Reidel, Dordrecht, pp. 782–787.

    Google Scholar 

  • Giorgi, F. and Chameides, W. L., 1985, The rainout parameterization in the photochemical model,J. Geophys. Res. 90, 7872–7880.

    Google Scholar 

  • Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986, Kinetic odel studies of atmospheric droplet chemistry, 2. Homogeneous transition metal chemistry in raindrops,J. Geophys. Res. 91, 5205–5221.

    Google Scholar 

  • Hesstvedt, E., Hov. Ø, and Isaksen, I. S. A., 1978, Quasi steady state approximation in air pollution modelling. Comparison of two numerical schemes for oxidant prediction,Int. J. Chem. Kinet. 10, 971–994.

    Google Scholar 

  • Isaksen, I. S. A., 1980, The tropospheric ozone budget and possible man-made effects, in J. London (ed.),Proc. Quadrennial International Ozone Symposium, pp. 845–852.

  • Isaksen, I. S. A. and Hov, /O., 1987, Calculation of trends in the tropospheric concentrations of O3, OH, CO, CH4 and NO x ,Tellus 39B, 271–285.

    Google Scholar 

  • Isaksen, I. S. A., Jonson, J. E., Reeves, C. E., Solberg, S., and Chatfield, R., 1989, Model studies of free tropospheric ozone formation from pollution sources, in R. D. Bojkov and P. Fabian (eds.),Proc. 4th Quadrennial Ozone Symposium, A Depak Publishing, pp. 544–548.

  • Isaksen, I. S. A., Midtbø, K. H., Sunde, J., and Crutzen, P. J., 1977, A simplified method to include molecular scattering and reflection in calculation of photon fluxes and photodissociation rates,Geophys. Norv. 31, 11–26.

    Google Scholar 

  • Isaksen, I. S. A. and Rodhe, H., 1978, A two-dimensional model for the global distribution of gases and aerosol particles in the troposphere, Inst. rapport AC-47 Dept. of Meteorology, University of Stockholm.

  • Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91, 9807–9826.

    Google Scholar 

  • Jonson, J. E. and Isaksen, I. S. A., 1991, The impact of solar flux variations on the tropospheric ozone chemistry, Inst. Rep. No. 81, Inst. of Geophysics, University of Oslo.

  • Jonson, J. E. and Isaksen, I. S. A., 1992, Parameterization of episodicl cloud and rainout events in coarce grid models,26A, 2019–2029.

  • Kley, D., Volz, A., and Mulheims, F., 1988, Ozone measurements in historic perspective, in I. S. A. Isaksen (ed.),Tropospheric Ozone — Regional and Global Scale Interactions, D. Reidel, Dordrecht, pp. 63–72.

    Google Scholar 

  • Larson, T. V., 1976, The kinetics of sulphur dioxide oxidation by ozone in atmospheric hydrometeors, PhD thesis, University of Washington.

  • Ledbury, W. and Blair, E. W., 1925, The partial formaldehyde vapour pressure of aqueous solutions of formaldehyde, II,J. Chem. Soc. 127, 2832–2839.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1990, Influences of cloud photochemical processes on tropospheric ozone,Nature 343, 227–233.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1991, The role of clouds in tropospheric photochemistry,J. Atmos. Chem. 12, 229–267.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989, Zonal average cloud characteristics for global atmospheric chemistry modelling, GLOMAC-report UDC 551.510.4, CM-74 International Meteorological Institute in Stockholm.

  • Logan, J. A., 1985, Tropospheric ozone — seasonal behaviour, trends and anthropogenic influence,J. Geophys. Res. 90, 10463–10482.

    Google Scholar 

  • Maahs, H. G., 1982, Measurements of the oxidation rate of sulfur (IV) by ozone in aqueous solution and their relevance to SO2 conversion in nonurban tropospheric clouds,Atmos. Environ. 17, 341–345.

    Google Scholar 

  • Martin, L. R., 1983, Kinetic studies of sulfite oxidation in aqueous solution in SO2, NO and NO2, in J. G. Calvert (ed.),Oxidation Mechanisms: Atmospheric Considerations, Butterworth, Stoneham, Mass., pp. 63–100.

    Google Scholar 

  • NBS, National Bureau of Standards, 1965, Selected values of chemical thermodynamics properties 1, NBS Technical Note 270-1, Washington DC.

  • Oort, A. H., 1983, Global atmospheric circulation statistics, 1958–1973, NOAA professional paper 14.

  • Penkett, S. A., Jones, B. M. R., Brice, K. A., and Eggleton, A. E. G., 1979, The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulphur dioxide in cloud and rainwater,Atmos. Environ. 13, 123–127.

    Google Scholar 

  • Schwartz, S. E., 1984, Gas- and aqueous-phase chemistry of HO2 in liquid water clouds,J. Geophys. Res. 89, 11,589–11,598.

    Google Scholar 

  • Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in W. Jaeschke (ed.),Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin, pp. 415–471.

    Google Scholar 

  • Smit, H. G. J., Kley, D., McKeen, S., Volz, A., and Gilge, S., 1989, The latitudinal and vertical distribution of tropospheric ozone over the Atlantic Ocean in the Southern and Northern Hemispheres inProc. 4th Quadrennial Ozone Symposium, A Depak Publishing, pp. 419–423.

  • Smolarkiewicz, P. K., 1983, A simple positive definite advection scheme with small implicit diffusion,Monthly Weather Rev. 111, 476–487.

    Google Scholar 

  • Solberg, S., Isaksen, I. S. A., and Chatfield, R., 1989, Design of a channel model to assess mid-latitude pollution effects, in R. D. Bojkov and P. Fabian,Proc. 4th Quadrennial Ozone Symposium, A. Depak Publishing, pp. 548–552.

  • Turman, B. N., and Edgar, B. C., 1982, Global lightning distributions at dawn and dusk,J. Geophys. Res. 87, 1191–1206.

    Google Scholar 

  • Vaghjiani, G. L. and Ravishankara, A. R., 1991, New measurements of the rate coefficient for the reaction of OH with methane,Nature 350, 406–409.

    Google Scholar 

  • WMO, 1991, Scientific assessment of ozone depletion: Chapter 21. Preprint December 17, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonson, J.E., Isaksen, I.S.A. Tropospheric ozone chemistry. The impact of cloud chemistry. J Atmos Chem 16, 99–122 (1993). https://doi.org/10.1007/BF00702781

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702781

Key words

Navigation