Journal of Cluster Science

, Volume 3, Issue 4, pp 459–467 | Cite as

Some relationships between metal cluster chemistry and heterogeneous catalysis

  • D. F. Shriver
Proceedings Of The US-Italy International Conference On Organic Chemistry At Clusters And Surfaces, Piemonte, Italy (July 26–31, 1992)—Part II Of III


Some analogies between organometallic chemistry and surface chemistry are developed. Comparison of Lewis acid promoted CO insertion and Zn2+ promotion of oxygenates in the hydroformylation of C2H4 over Rh, suggests that Zn2+ interaction with Rh-CO may promote migratory insertion which favors hydroformylation over hydrogenation of alkenes. CCO, which is observed in metal clusters should be a viable surface species. Finally, parallels can be found between the positioning of oxygen in clusters and on surfaces.

Key words

Metal clusters heterogeneous catalysis organometallics oxide sulfide acetylide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Gates, L. Guczi, and H. Knozinger (eds.).Metal Clusters in Catalysis (Elsevier, Amsterdam, 1986).Google Scholar
  2. 2.
    J. M. Basset, B. C. Gates,et al., Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis, Vol. 231 (NATO ASI Series C, Kluwer Academic Publ., Dordrecht, Boston and London, 1988).Google Scholar
  3. 3.
    H. H. Lamb, B. C. Gates, and H. Knozinger (1988).Angew. Chem. Int. Ed. Engl. Google Scholar
  4. 4.
    G. W. Parshall and S. D. Ittel,Homogeneous Catalysis (Wiley-Interscience, New York, 1992).Google Scholar
  5. 5.
    J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke,Principles and Applications of Organometallic Chemistry (University Science Books, Mill Valley, CA, 1987).Google Scholar
  6. 6.
    H. Berke and R. Hoffman (1978).J. Am. Chem. Soc. 100, 7224.Google Scholar
  7. 7.
    J. P. Collman, R. G. Finke, J. N. Cawse, and J. I. Brauman (1978).J. Am. Chem. Soc. 100, 4766.Google Scholar
  8. 8.
    S. B. Butts, S. H. Strauss, E. M. Holt, R. E. Stimson, N. W. Alcock, and D. F. Shriver (1980).J. Am. Chem. Soc. 102, 5093.Google Scholar
  9. 9.
    D. F. Shriver,in P. C. Ford (ed.),Catalytic Activation of Carbon Monoxide (ACS Symposium Series 152, American Chemical Society Washington, D.C., 1981), p. 1.Google Scholar
  10. 10.
    W. M. H. Sachtler, D. F. Shriver, W. B. Hollenberg, and A. F. Lang (1985).J. Catal. 92, 429.Google Scholar
  11. 11.
    W. M. H. Sachtler, D. F. Shriver, and M. Ichikawa (1986).J. Catal. 99, 513.Google Scholar
  12. 12. (a)
    E. K. Poels, R. Koolstra, J. W. Geus, and V. Ponec (1982).Stud. Surf. Sci. Catal. 11, 233;Google Scholar
  13. 12. (b)
    J. M. Driessen, E. K. Poels, J. P. Hinderman, and V. Ponec (1983).J. Catal. 82, 26.Google Scholar
  14. 13.
    K. Whitmire and D. F. Shriver (1980).J. Am. Chem. Soc. 102, 1456.Google Scholar
  15. 14.
    M. A. Drezdzon, K. H. Whitmire, A. A. Bhattacharyya, W.-L. Hsu, C. C. Nagel, S. G. Shore, and D. F. Shriver (1982).J. Am. Chem. Soc. 104, 5630.Google Scholar
  16. 15.
    A. Ceriotti, P. Chini, G. Longoni, and G. Piro (1982).Gazz. Chim. Ital. 112, 353.Google Scholar
  17. 16.
    J. W. Kolis, E. M. Holt, M. A. Drezdzon, K. H. Whitmire, and D. F. Shriver (1982).J. Am. Chem. Soc. 104, 6134.Google Scholar
  18. 17.
    S. H. Moon, J. H. Onofevko and J. R. Katzev (1981).J. Vac. Sci. Technol. 18, 467.Google Scholar
  19. 18.
    C. K. Schauer and D. F. Shriver (1987).Angew. Chem. Int. Ed. Eng. 26, 255.Google Scholar
  20. 19.
    C. K. Schauer, E. J. Voss, M. Sabat, and D. F. Shriver (1989).J. Am. Chem. Soc. 111, 7662.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. F. Shriver
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanston

Personalised recommendations