Advertisement

Journal of Cluster Science

, Volume 1, Issue 3, pp 269–285 | Cite as

An organometallic approach to the synthesis of high nuclearity Mo-Fe-S clusters as potential models for the iron-molybdenum cofactor of nitrogenase

  • Patricia A. Eldredge
  • Bruce A. Averill
Review

Abstract

Reaction of the [Fe2S2(CO)6]2− dianion with molybdenum reagents produces a number of high-nuclearity Mo-Fe-S carbonyl clusters with Fe/Mo ratios ≥5, as well as a variety of new Fe-S carbonyl clusters. The former are particularly relevant as models or precursors to models for the iron-molybdenum cofactor [FeMo-cofactor] of nitrogenase. General strategies for the synthesis of FeMo-cofactor models are briefly reviewed, and the structures of clusters produced in the [Fe2S2(CO)6]2−/Mo systems examined to date are described.

Key words

Nitrogenase iron-molybdenum cofactor molybdenum-iron-sulfur clusters iron-sulfur clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Orme-Johnson and L. C. Davis,in W. Lovenberg (ed.),Iron-Sulfur Proteins, Vol. III (Academic Press, New York, 1976), Ch. 2, pp. 15–60.Google Scholar
  2. 2.
    R. N. F. Thorneley and D. J. Lowe,in T. Spiro (ed.),Molybdenum Enzymes (Wiley-Interscience, New York, 1985), Ch. 5.Google Scholar
  3. 3.
    M. J. Nelson, P. A. Lindahl, and W. H. Orme-Johnson (1982).Adv. Inorg. Biochem. 4, 1.Google Scholar
  4. 4.
    W. O. Gillum, L. E. Mortenson, J.-S. Chen, and R. H. Holm (1977),J. Am. Chem. Soc. 99, 584.Google Scholar
  5. 5.
    J. M. Berg and R. H. Holm,in T. Spiro (ed.),Metal Ions in Biology, Vol. 4 (Wiley, New York, 1981), Ch. 1.Google Scholar
  6. 6.
    B. A. Averill and W. H. Orme-Johnson,in H. Siegel (ed.),Metal Ions in Biological Systems, Vol. 7 (Marcel Dekker, New York, 1978), Ch. 4.Google Scholar
  7. 7.
    P. J. Stephens,in T. Spiro (ed.),Molybdenum Enzymes (Wiley-Interscience, New York, 1985), p. 117.Google Scholar
  8. 8.
    W. H. Orme-Johnson (1985).Ann. Rev. Biophys. Biophys. Chem. 14, 419.Google Scholar
  9. 9.
    V. K. Shaw and W. J. Brill (1977).Proc. Natl. Acad. Sci. USA 74, 3249.Google Scholar
  10. 10.
    B. K. Burgess,in T. Spiro (ed.),Molybdenum Enzymes (Wiley-Interscience, New York, 1985), p. 161.Google Scholar
  11. 11. (a)
    R. Zimmerman, E. Münck, W. J. Brill, V. K. Shah, M. T. Henzl, J. Rawlings, and W. H. Orme-Johnson (1978).Biochim. Biophys. Acta 537, 185;Google Scholar
  12. 11. (b)
    B. H. Huynh, E. Münck, and W. H. Orme-Johnson (1979).Biochim. Biophys. Acta 576, 192;Google Scholar
  13. 11. (c)
    B. H. Huynh, M. T. Henzl, J. A. Christner, R. Zimmerman, W. H. Orme-Johnson, and E. Münck (1980).Biochim. Biophys. Acta 623, 124;Google Scholar
  14. 11. (d)
    P. A. McLean, V. Papaefthymiou, W. H. Orme-Johnson, and E. Münck (1987).J. Biol. Chem. 262, 12,900;Google Scholar
  15. 11. (e)
    P. A. Lindahl, V. Papaefthymiou, W. H. Orme-Johnson, and E. Münck (1988).J. Biol. Chem. 263, 19,412.Google Scholar
  16. 12. (a)
    B. E. Smith, M. J. O'Donnell, G. Lang, and K. Spartalian (1980).Biochem. J. 191, 449;Google Scholar
  17. 12. (b)
    W. R. Dunham, W. R. Hagen, A. Braaksma, H. J. Grande, and H. Haaker (1985).Eur. J. Biochem. 146, 497;Google Scholar
  18. 12. (c)
    W. E. Newton, S. F. Gheller, R. H. Sands, and W. R. Dunham (1989).Biochim. Biophys. Res. Commun. 162, 882.Google Scholar
  19. 13. (a)
    B. M. Hoffman, R. A. Venters, J. E. Roberts, M. Nelson, and W. H. Orme-Johnson (1982).J. Am. Chem. Soc. 104, 4711;Google Scholar
  20. 13. (b)
    B. M. Hoffman, J. E. Roberts, and W. H. Orme-Johnson (1982).J. Am. Chem. Soc. 104, 860;Google Scholar
  21. 13. (c)
    H. Thomann, T. V. Morgan, H. Jin, S. J. N. Burgmayer, R. E. Bare, and E. I. Stiefel (1987).J. Am. Chem. Soc. 109, 7913;Google Scholar
  22. 13. (d)
    A. E. True, M. J. Nelson, R. A. Venters, W. H. Orme-Johnson, and B. M. Hoffman (1988).J. Am. Chem. Soc. 110, 1935;Google Scholar
  23. 13. (e)
    W. B. Euler, J. Martinsen, J. W. McDonald, G. D. Watt, and Z.-C. Wang (1984).Biochemistry 23, 3021;Google Scholar
  24. 13. (f)
    G. N. George, R. E. Bare, H. Jin, E. I. Stiefel, and R. C. Prince (1989).Biochem. J. 262, 349.Google Scholar
  25. 14. (a)
    S. P. Cramer, K. O. Hodgson, W. O. Gillum, L. E. Mortenson (1978).J. Am. Chem. Soc. 100, 3398;Google Scholar
  26. 14. (b)
    S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill, and V. K. Shah (1978).J. Am. Chem. Soc. 100, 3814;Google Scholar
  27. 14. (c)
    A. M. Flank, M. Weininger, L. E. Mortenson, and S. P. Cramer (1986).J. Am. Chem. Soc. 108, 1049;Google Scholar
  28. 14. (d)
    S. D. Conradson, B. K. Burgess, W. E. Newton, L. E. Mortenson, and K. O. Hodgson (1987).J. Am. Chem. Soc. 109, 7507;Google Scholar
  29. 14. (e)
    B. Hedman, P. Frank, S. F. Gheller, A. L. Roe, W. E. Newton, and K. O. Hodgson (1988).J. Am. Chem. Soc. 110, 3798;Google Scholar
  30. 14. (f)
    S. D. Conradson, B. K. Burgess, S. A. Vaughn, A. L. Roe, B. Hedman, K. O. Hodgson, and R. H. Holm (1989).J. Biol. Chem. 264, 15,967;Google Scholar
  31. 14. (g)
    S. D. Conradson, B. K. Burgess, W. E. Newton, K. O. Hodgson, J. W. McDonald, J. F. Rubinson, S. F. Gheller, L. E. Mortenson, M. W. W. Adams, P. K. Mascharak, W. A. Armstrong, and R. H. Holm (1985).J. Am. Chem. Soc. 107, 7935.Google Scholar
  32. 15. (a)
    M. R. Antonio, B. A. Averill, S. E. Groh, S. M. Kauzlarich, P. A. Lindahl, M. J. Nelson, W. H. Orme-Johnson, and B.-K. Teo (1982).J. Am. Chem. Soc. 104, 4703;Google Scholar
  33. 15. (b)
    J. M. Arber, A. C. Flood, C. D. Garner, C. A. Gormal, S. S. Hasnain, and B. E. Smith (1988).Biochem. J. 252, 421.Google Scholar
  34. 16. (a)
    P. J. Stephens, C. E. McKenna, B. E. Smith, H. T. Nguyen, M. C. McKenna, A. J. Thomson, F. Devlin, and J. B. Jones (1979).Proc. Natl. Acad. Sci. USA 76, 2585;Google Scholar
  35. 16. (b)
    P. J. Stephens, C. E. McKenna, M. C. McKenna, H. T. Nguyen, and F. Devlin (1981).Biochemistry 20, 2857;Google Scholar
  36. 16. (c)
    M. K. Johnson, A. J. Thomson, A. E. Robinson, and B. E. Smith (1981).Biochim. Biophys. Acta 671, 61.Google Scholar
  37. 17. (a)
    P. K. Mascharak, M. C. Smith, W. H. Armstrong, B. K. Burgess, and R. H. Holm (1982).Proc. Natl. Acad. Sci. USA 79, 7056;Google Scholar
  38. 17. (b)
    S. D. Conradson, B. K. Burgess, and R. H. Holm (1988).J. Biol. Chem. 263, 13,743.Google Scholar
  39. 18. (a)
    J. P. Smith, M. H. Emptage, and W. H. Orme-Johnson (1982).J. Biol. Chem. 257, 2310;Google Scholar
  40. 18. (b)
    E. P. Day, T. A. Kent, P. A. Lindahl, E. Münck, W. H. Orme-Johnson, H. Roder, and A. Roy (1987).Biophys. J. 52, 837.Google Scholar
  41. 19.
    G. D. Watt, A. Burns, S. Lough, and D. L. Tennent (1980).Biochemistry 19, 4926;Google Scholar
  42. 19. (b)
    T. V. Morgan, L. E. Mortenson, J. W. McDonald, and G. D. Watt (1988).J. Inorg. Biochem. 33, 111;Google Scholar
  43. 19. (c)
    F. A. Schultz, S. F. Gheller, B. K. Burgess, S. Lough, and W. E. Newton (1985).J. Am. Chem. Soc. 107, 5364;Google Scholar
  44. 19. (d)
    F. A. Schultz, S. F. Gheller, and W. E. Newton (1988).Biochem. Biophys. Res. Commun. 152, 629;Google Scholar
  45. 19. (e)
    W. E. Newton, S. F. Gheller, B. J. Feldman, W. R. Dunham, and F. A. Schultz (1989).J. Biol. Chem. 264, 1924;Google Scholar
  46. 19. (f)
    F. A. Schultz, B. J. Feldman, S. F. Gheller, and W. E. Newton (1990).Inorg. Chim. Acta 170, 115.Google Scholar
  47. 20. (a)
    P. E. Bishop, D. M. L. Jarlenski, and D. R. Hetherington (1980).Proc. Natl. Acad. Sci. USA 77, 7342; (1982).J. Bacteriol. 150, 1244;Google Scholar
  48. 20. (b)
    B. J. Hales, E. E. Case, J. E. Morningstar, M. F. Dzeda, and L. A. Mauterer (1986).Biochemistry 25, 7251;Google Scholar
  49. 20. (c)
    R. R. Eady, R. L. Robson, T. H. Richardson, R. W. Miller, and M. Hawkins (1987).Biochem. J. 244, 197;Google Scholar
  50. 20. (d)
    J. M. Arber, B. R. Dobson, R. R. Eady, P. Stevens, S. S. Hasnain, C. D. Garner, and B. E. Smith (1987).Nature 325, 372;Google Scholar
  51. 20. (e)
    J. E. Morningstar and B. J. Hales (1987).J. Am. Chem. Soc. 109, 6854;Google Scholar
  52. 20. (f)
    J. E. Morningstar, M. K. Johnson, E. E. Case, and B. J. Hales (1987).Biochemistry 26, 1795.Google Scholar
  53. 21. (a)
    J. R. Chisnell, R. Premakumar, and P. E. Bishop (1988).J. Bacteriol. 17, 27;Google Scholar
  54. 21. (b)
    R. D. Joerger, M. R. Jacobson, R. Premakumar, E. D. Wolfinger, and P. E. Bishop (1989).J. Bacteriol. 171, 1075.Google Scholar
  55. 22. (a)
    R. H. Holm and E. D. Simhon,in T. Spiro (ed.),Molybdenum Enzymes (Wiley-Interscience, New York, 1985), p. 1;Google Scholar
  56. 22. (b)
    B. A. Averill (1983).Struct. Bonding (Berlin) 53, 59;Google Scholar
  57. 22. (c)
    R. E. Palermo, R. Singh, J. K. Bashkin, and R. H. Holm (1984).J. Am. Chem. Soc. 106, 2600;Google Scholar
  58. 22. (d)
    Y.-P. Zhang, J. K. Bashkin, and R. H. Holm (1987).Inorg. Chem. 26, 694.Google Scholar
  59. 23.
    D. Coucouvanis (1981).Acc. Chem. Res. 14, 201.Google Scholar
  60. 24. (a)
    A. Müller, S. Sarkar, H. Bögge, R. Jostes, A. Trautwein, and U. Lauer (1983).Angew. Chem. Int. Ed. Engl. 22, 561;Google Scholar
  61. 24. (b)
    A. Müller, S. Sarkar, A.-M. Dommröse, and R. Filgueira (1980).Z. Naturforsch 35b, 1592;Google Scholar
  62. 24. (c)
    B.-K. Teo, M. R. Antonio, R. H. Tieckelmann, H. C. Silvis, and B. A. Averill (1982).J. Am. Chem. Soc. 104, 6126;Google Scholar
  63. 24. (d)
    G. D. Friesen, J. W. McDonald, W. E. Newton, W. B. Euler, and B. M. Hoffman (1983).Inorg. Chem. 22, 2202;Google Scholar
  64. 24. (e)
    G. A. Bowmaker, P. D. W. Boyd, R. J. Sorrenson, C. A. Reed, and J. W. McDonald (1987).Inorg. Chem. 26, 3;Google Scholar
  65. 24. (f)
    A. Müller, W. Hellmann, C. Römer, M. Römer, H. Bögge, R. Jostes, and U. Schimanski (1984).Inorg. Chim. Acta 83, L75;Google Scholar
  66. 24. (g)
    R. J. Anglin, D. M. Kurtz, Jr., S. Kim, and R. A. Jacobson (1987).Inorg. Chem. 26, 1472.Google Scholar
  67. 25.
    J. A. Ibers and R. H. Holm (1980).Science 209, 223.Google Scholar
  68. 26.
    H. A. O. Hill (1976).Chem. Brit. 12, 119.Google Scholar
  69. 27. (a)
    D. Coucouvanis,in A. Müller and W. E. Newton (eds.),Nitrogen Fixation, The Chemical-Biochemical-Genetic Interface (Plenum Press, New York, 1983), p. 211;Google Scholar
  70. 27. (b)
    C. D. Garner, S. R. Acott, G. Christou, D. Collison, F. E. Mabbs, V. Petrouleas, and C. J. Pickett,in A. Müller and W. E. Newton (eds.),Nitrogen Fixation, The Chemical-Biochemical-Genetic Interface (Plenum Press, New York, 1983), p. 245.Google Scholar
  71. 28.
    D. Coucouvanis, E. D. Simhon, and N. C. Baenziger (1980).J. Am. Chem. Soc. 102, 6646.Google Scholar
  72. 29. (a)
    D. Coucouvanis (1988).ACS Symp. Ser. 372, 390;Google Scholar
  73. 29. (b)
    D. Coucouvanis, A. Salifoglou, M. G. Kanatzidis, A. Simopoulos, and A. Kostikas (1987).J. Am. Chem. Soc. 109, 3807;Google Scholar
  74. 29. (c)
    A. Salifoglou, M. G. Kanatzidis, and D. Coucouvanis (1986).J. Chem. Soc. Chem. Commun. 559;Google Scholar
  75. 29. (d)
    M. G. Kanatzidis and D. Coucouvanis (1986).J. Am. Chem. Soc. 108, 337;Google Scholar
  76. 29. (e)
    D. Coucouvanis and M. G. Kanatzidis (1985).J. Am. Chem. Soc. 107, 5005.Google Scholar
  77. 30.
    D. Coucouvanis, A.-A. Saleem, A. Salifoglou, W. R. Dunham, and R. H. Sands (1988).Angew. Chem. Intl. Ed. Engl. 27, 1353.Google Scholar
  78. 31.
    D. Seyferth, R. S. Henderson, and L. C. Song (1982).Organometallics 1, 125.Google Scholar
  79. 32. (a)
    N. S. Nametkin, V. D. Tyurin, G. G. Aleksandrov, O. V. Kuz'min, A. I. Nekhaev, V. G. Andrianov, M. Mavlonov, and Yu. T. Struchkov (1979).Izv. Akad. Nauk. SSSR, Ser. Khim. 28, 1353;Google Scholar
  80. 32. (b)
    J. A. Kovacs, J. K. Bashkin, and R. H. Holm (1985).J. Am. Chem. Soc. 107, 1784; (1987).Polyhedron 6, 1445.Google Scholar
  81. 33. (a)
    K. S. Bose, P. E. Lamberty, J. A. Kovacs, E. Sinn, and B. A. Averill (1986).Polyhedron 5, 393;Google Scholar
  82. 33. (b)
    P. A. Eldredge, R. F. Bryan, E. Sinn, and B. A. Averill (1988).J. Am. Chem. Soc. 110, 5573;Google Scholar
  83. 33. (c)
    K. S. Bose, S. A. Chmielewski, P. A. Eldredge, E. Sinn, and B. A. Averill (1989).J. Am. Chem. Soc. 111, 8953.Google Scholar
  84. 34.
    D. Coucouvanis, A. Salifoglou, M. G. Kanatzidis, W. R. Dunham, A. Simopoulos, and A. Kostikas (1988).Inorg. Chem. 27, 4066.Google Scholar
  85. 35.
    S. A. Al-Ahmad, A. Salifoglou, M. G. Kanatzidis, W. R. Dunham, and D. Coucouvanis (1990).Inorg. Chem. 29, 927.Google Scholar
  86. 36.
    P. A. Eldredge, K. S. Bose, D. E. Barber, R. F. Bryan, E. Sinn, A. Rheingold, and B. A. Averill (1991).Inorg. Chem. 30, in press.Google Scholar
  87. 37. (a)
    G. L. Lilley, E. Sinn, and B. A. Averill (1986).Inorg. Chem. 25, 1073.Google Scholar
  88. 37. (b)
    D. E. Barber, Ph.D. thesis (University of Virginia, 1990);Google Scholar
  89. 37. (c)
    K. S. Bose, E. Sinn, and B. A. Averill (1984).Organometallics 3, 1126;Google Scholar
  90. 37. (d)
    X. Wu, K. S. Bose, E. Sinn, and B. A. Averill (1989).Organometallics 8, 251.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Patricia A. Eldredge
    • 1
  • Bruce A. Averill
    • 1
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesville

Personalised recommendations