Applied Physics B

, Volume 26, Issue 1, pp 1–17 | Cite as

A combination of laser-induced grating and transient-absorption experiments for investigation of laser pulse properties and fast molecular relaxation processes

  • A. von Jena
Invited Paper

Abstract

A repetitive low-power laser-pulse apparatus has been developped which allows both absorption relaxation and light-induced grating experiments without changing geometry or components. The influence of pulse width and coherence time on the diffracted intensity correlation function is discussed for a weak amplitude grating in terms of a simplified theory. From the corresponding absorption relaxation signals including the coherent coupling contribution some easy ways for detecting vibronic-relaxation, intersystem-crossing and orientational-relaxation times are deduced. The advantage of the “in-situ” measurement of the amplitude grating autocorrelation function leads to a precise zero-delay calibration of the transient absorption equipment. Furthermore one gets the response function for the absorption experiments from the grating experiments, if stable mode-locking operation of the argon laser is reached. This condition can be controlled either by the time course of the absorption or grating signals. A surprisingly short coherence length is detected for the cavity-dumped laser beam. A reliable check of the coherent-coupling theory confirms the theoretical assumptions incorporated into the fast-relaxation signal analysis. Experiments on dye molecules show high triplet yield of heavy-atom substituted dyes and fast rotational diffusion of oblong molecular rotors.

PACS

33.50 Hv 42.10 Jd 42.10 Qj 42.60 He 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. von Jena, H.E. Lessing: Appl. Phys.19, 131–144 (1979)Google Scholar
  2. 2.
    H.E. Lessing, A. von Jena: InLaser Handbook, Vol. 3, ed. by M.L. Stitch (North-Holland, Amsterdam 1979) pp. 753–846Google Scholar
  3. 3.
    H.J. Eichler, U. Klein, D. Langhans: Appl. Phys.21, 215–219 (1980)Google Scholar
  4. 4.
    E.P. Ippen, C.V. Shank: InUltrashort Light Pulses, ed. by S.L. Shapiro, Topics Appl. Phys.18, (Springer, Berlin, Heidelberg, New York 1977) pp. 83–102Google Scholar
  5. 5.
    D.J. Bradley: J. Phys. Chem.82, 2259–2268 (1978)Google Scholar
  6. 6.
    A.E. Siegmann: J. Opt. Soc. Am.67, 545–550 (1977)Google Scholar
  7. 7.
    A. von Jena, H.E. Lessing: Opt. Quant. Electron.11, 419–439 (1979)Google Scholar
  8. 8.
    G.R. Fleming, G.S. Beddard: Opt. Laser Tech. 257-264 (1978)Google Scholar
  9. 9.
    C.V. Shank, E.P. Ippen: Appl. Phys. Lett.24, 373–374 (1974)Google Scholar
  10. 10.
    D.P. Millar, R. Shah, A.H. Zewail: Chem. Phys. Lett.66, 435–440 (1978)Google Scholar
  11. 11.
    C. Lin, A. Dienes: Opt. Commun9, 21–24 (1973)Google Scholar
  12. 12.
    C.V. Shank, E.P. Ippen, O. Teschke: Chem. Phys. Lett.45, 291–294 (1977)Google Scholar
  13. 13.
    J.M. Wiesenfeld, E.P. Ippen: Chem Phys. Lett.67, 213–216 (1979)Google Scholar
  14. 14.
    G. Mourou, M.M. Malley: Chem. Phys. Lett.32, 476–479 (1975)Google Scholar
  15. 15.
    B. Kopainsky, W. kaiser: Chem. Phys. Lett.66, 39–43 (1979)Google Scholar
  16. 16.
    R.K. Jain, J.P. Heritage: Appl. Phys. Lett.32, 41–44 (1978)Google Scholar
  17. 17.
    I.S. Ruddock, D.J. Bradley: Appl. Phys. Lett.29, 296–297 (1976)Google Scholar
  18. 18.
    J.B. Birks:Photophysics of Aromatic Molecules (Wiley-Interscience, London 1970)Google Scholar
  19. 19.
    H.E. Lessing, A. von Jena, M. Reichert: Chem. Phys. Lett.42, 218–222 (1976)Google Scholar
  20. 20.
    C.V. Shank, E.P. Ippen: Appl. Phys. Lett.26, 62–63 (1975)Google Scholar
  21. 21.
    A. von Jena, H.E. Lessing: Chem. Phys.40, 245–256 (1979)Google Scholar
  22. 22.
    A. von Jena, H.E. Lessing: Ber. Bunsenges.83, 181–191 (1979)Google Scholar
  23. 23.
    H.E. Lessing, A. von Jena: Chem. Phys. Lett.42, 213–218 (1976)Google Scholar
  24. 24.
    H.J. Eichler: Opt. Acta24, 631–642 (1977)Google Scholar
  25. 25.
    J.R. Salcedo, A.E. Siegmann: IEEE J. QE-15, 250–256 (1976)Google Scholar
  26. 26.
    G. Porter, E.S. Reid, C.J. Tredwell: Chem. Phys. Lett.29, 469–472 (1974)Google Scholar
  27. 27.
    L.A. Halliday, M.R. Topp: Chem. Phys. Lett.46, 8–14 (1977)Google Scholar
  28. 28.
    P.G. Seybold, M. Goutermann, J. Collis: Photochem. Photobiol.9, 229–235 (1969)Google Scholar
  29. 29.
    G.R. Fleming, J.M. Morris, G.W. Robinson: Chem. Phys.17, 91–100 (1976)Google Scholar
  30. 30.
    L.E. Cramer, K.G. Spears: J. Am. Chem. Soc.100, 221–227 (1978)Google Scholar
  31. 31.
    W. Yu, F. Pellegrino, M. Grant, R.R. Alfano: J. Chem. Phys.67, 1766–1773 (1977)Google Scholar
  32. 32.
    H. Kuhn: Fortschr. Chem. org. Naturstoffe16, 170–205 (1958)Google Scholar
  33. 33.
    H.E. Lessing, A. von Jena: Chem. Phys. Lett.59, 249–254 (1978)Google Scholar
  34. 34.
    A. von Jena, H.E. Lessing: Chem. Phys. Lett.78, 187–193 (1981)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. von Jena
    • 1
  1. 1.Abteilung Chemische PhysikUniversität UlmUlmFed. Rep. Germany

Personalised recommendations