Skip to main content
Log in

CO2-laser-induced breakdown in mono- and diatomic gases

  • Contributed Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Several monoatomic and homonuclear diatomic gases absorb energy from a focused CO2-laser photon field. It has been established that the pressure threshold for the energy absorption correlates qualitatively with the known ionization potentials of those gases. The simplified phenomenological theory of the CO2-laser-induced dielectric breakdown of gases is invoked to explain this phenomenon. In the H2−D2 system, the formation of HD is observed under these conditions. The examination of the reaction yields for HD formation demonstrates that the system studied does not reach equilibrium under our experimental conditions. Considerations regarding kinetics of primary processes reveal that ionic species, created originally via an inverse bremsstrahlung mechanism, are converted into atomic transients in fast ionic association processes. The latter species initiate chain reactions with surrounding molecules of substrates leading to the formation of HD. Simple kinetic analysis based on a non-steady-state assumption permitted the derivation of an expression for the yield of HD formation. This equation was fitted to the experimental data assuming that the temperature of the reaction rises with an increase of the amount of D2 in the mixture. Some other aspects regarding the behavior of this system in a focused CO2 laser beam are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Generalov, V.P. Zimanov, G.I. Kozlov, V.A. Masyukov, Yu.P. Raizer: Pis'ma Zh. Eksp. Teor. Fiz.11, 343 (1970)

    Google Scholar 

  2. D.C. Smith: J. Appl. Phys.41, 4501 (1970)

    Google Scholar 

  3. D.C. Smith: Appl. Phys. Lett.19, 405 (1971)

    Google Scholar 

  4. G.A. Hill, D.J. James, S.A. Ramsden: J. Phys. D.5, L97 (1972)

    Google Scholar 

  5. A.A. Offenberger, N.H. Brunett: J. Appl. Phys.43, 4977 (1972)

    Google Scholar 

  6. N.G. Basov, E.M. Belenov, V.A. Danilychev, O.M. Kerimov, I.B. Kovsh: Zh. Eksp. Teor. Fiz.63, 2010 (1972)

    Google Scholar 

  7. R.T. Brown, D.C. Smith: Appl. Phys. Lett.22, 245 (1973)

    Google Scholar 

  8. M.P. Hacker, D.R. Cohn, B. Lax: Appl. Phys. Lett.23, 392 (1973)

    Google Scholar 

  9. C.H. Chan, C.D. Moody, W.B. McKnight: J. Appl. Phys.44, 1179 (1973)

    Google Scholar 

  10. C.D. Moody: Appl. Phys. Lett.22, 31 (1973)

    Google Scholar 

  11. M.P. Hacker, D.R. Cohn, R.L. Brooks: Appl. Phys. Lett.24, 173 (1974)

    Google Scholar 

  12. N.H. Burnett, A.A. Offenberger: J. Appl. Phys.45, 623 (1974)

    Google Scholar 

  13. P. Behrens: U.S.N.T.I.S., AD Rep. 1974, No. 783855/OGA; C.A.82, 131784z (1975)

    Google Scholar 

  14. D.R. Cohn, M.P. Hacker, B. Lax, W. Halverson: J. Appl. Phys.46, 668 (1975)

    Google Scholar 

  15. C.G. Morgan: Rep. Prog. Phys.38, 621 (1975)

    Google Scholar 

  16. G.I. Kozlov: Zh. Tekh. Fiz.49, 67 (1979)

    Google Scholar 

  17. G. Roy, Y. D'Astous, M. Blanchard, R. Tremblay: Can. J. Phys.58, 1477 (1980)

    Google Scholar 

  18. P.E. Nielsen, G.H. Canavan: J. Appl. Phys.44, 4224 (1973)

    Google Scholar 

  19. C.H. Chan, C.D. Moody: J. Appl. Phys.45, 1105 (1974)

    Google Scholar 

  20. P. Fournier, B. Lassier-Govers, G. Comtet: Springer Ser. Chem. Phys. 6 (Laser-Induced Processes Mol.), 247 (1979)

    Google Scholar 

  21. A.E. Orel, W.H. Miller: J. Chem. Phys.72, 5139 (1980)

    Google Scholar 

  22. G.V. Gomelauri, A.S. Epifanov, A.A. Manenkov, A.M. Prokhorov: Zh. Eksp. Teor. Fiz.79, 2356 (1980)

    Google Scholar 

  23. M. Mohan: J. Chem. Phys.75, 1772 (1981)

    Google Scholar 

  24. R.T. Bailey, F.R. Cruickshank, D. Pugh, W. Johnstone: J. Chem. Soc., Faraday Trans. II77, 1387 (1981)

    Google Scholar 

  25. M. Mohan: Mol. Phys.50, 1251 (1983)

    Google Scholar 

  26. F.F. Kormendi: Opt. Acta31, 301 (1984)

    Google Scholar 

  27. D.G. Truhlar, R.E. Wyatt: Ann. Rev. Phys. Chem.27, 1 (1976)

    Google Scholar 

  28. L.L. Lohr: Chem. Phys. Lett.56, 28 (1978)

    Google Scholar 

  29. M. Kneba, U. Wellhausen, J. Wolfrum: Ber. Bumsenges. Phys. Chem.83, 940 (1979)

    Google Scholar 

  30. S.H. Bauer: Ann. Rev. Phys. Chem.30, 271 (1979)

    Google Scholar 

  31. B.C. Garrett, D.G. Truhlar: J. Chem. Phys.72, 3460 (1980)

    Google Scholar 

  32. M.J. Henchman, N.G. Adams, D. Smith: J. Chem. Phys.75, 1201 (1981)

    Google Scholar 

  33. S.L. Anderson, F.A. Houle, D. Gerlich, Y.T. Lee: J. Chem. Phys.75, 2153 (1981)

    Google Scholar 

  34. J.M. Bowman, K.-T. Lee, R.B. Walker: J. Chem. Phys.79, 3742 (1983)

    Google Scholar 

  35. A. Lifshitz, M. Badini, H.F. Carroll: J. Chem. Phys.79, 2742 (1983)

    Google Scholar 

  36. J. Tsuruta, T. Mlyazaki, K. Fueki, N. Azuma: J. Phys. Chem.87, 5422 (1983)

    Google Scholar 

  37. J. Blazejowski, F.W. Lampe: J. Appl. Phys.59, 2283 (1986)

    Google Scholar 

  38. K.W. Saunders, H.A. Taylor: J. Chem. Phys.9, 616 (1941)

    Google Scholar 

  39. A. Schwebel, A.M. Ronn: J. Phys. Chem.87, 4375 (1983)

    Google Scholar 

  40. J.D. Campbell, G. Hancock, J.B. Halpern, K.H. Welge: Chem. Phys. Lett.44, 404 (1976)

    Google Scholar 

  41. Y. Ishikawa, O. Kurihara, R. Nakane, S. Arai: Chem. Phys.52, 143 (1980)

    Google Scholar 

  42. V.E. Merchant: Opt. Commun.25, 259 (1978)

    Google Scholar 

  43. S.V. Filseth, J. Danon, D. Feldmann, J.D. Campbell, K.H. Welge: Chem. Phys. Lett.63, 615 (1979)

    Google Scholar 

  44. P. Avouris, I.Y. Chan, M.M.T. Loy: J. Chem. Phys.72, 3522 (1980)

    Google Scholar 

  45. Y. Langsam, A.M. Ronn: Chem. Phys.54, 277 (1981)

    Google Scholar 

  46. A.M. Ronn: Chem. Phys. Lett.42, 202 (1976)

    Google Scholar 

  47. S.H. Bauer, D.M. Lederman, E.L. Resler, E.R. Fischer: Int. J. Chem. Kinet.5, 93 (1973)

    Google Scholar 

  48. D. Rapp, P. Englander-Golden, D.D. Briglia: J. Chem. Phys.42, 4081 (1965)

    Google Scholar 

  49. C. Backx, G.R. Wight, M.J. Van der Wiel: J. Phys. B9, 315 (1976)

    Google Scholar 

  50. K. Koellmann: J. Phys. B11, 339 (1978)

    Google Scholar 

  51. M.D. Burrows, L.C. McIntyre, S.R. Ryan, W.E. Lamb: Phys. Rev. A21, 1841 (1980)

    Google Scholar 

  52. M. Landau, R.I. Hall, F. Pichou: J. Phys. B14, 1509 (1981)

    Google Scholar 

  53. R. Schnitzer, R.W. Odom, M. Anbar. J. Chem. Phys.68, 1489 (1978)

    Google Scholar 

  54. M. Capitelli, M. Dilonardo: Chem. Phys.20, 417 (1977)

    Google Scholar 

  55. T. Ogawa, M. Higo: Chem. Phys.52, 55 (1980)

    Google Scholar 

  56. M. Capitelli, E. Molinari: Top. Curr. Chem.90, 59 (1980)

    Google Scholar 

  57. S.-I. Chu, C. Laughlin, K.K. Dutta: Chem. Phys. Lett.98, 476 (1983)

    Google Scholar 

  58. A. Carrington, J. Buttenshaw: Mol. Phys.44, 267 (1981)

    Google Scholar 

  59. S.S. Prasad, W.T. Huntress: Astrophys. J. Suppl.43, 1 (1980)

    Google Scholar 

  60. T. Masuoka: J. Chem. Phys.81, 2652 (1984)

    Google Scholar 

  61. D. Smith, N.G. Adams: Pure Appl. Chem.56, 175 (1984)

    Google Scholar 

  62. A. Giusti-Suzor, J.N. Bardsley, C. Derkits. Phys. Rev. A28, 682 (1983)

    Google Scholar 

  63. W.T. Huntress: InInteractions between Ions and Molecules, ed. by P. Ausloos. Nato Advanced Study Institutes Series, Ser. B.: Physics (Plenum, New York 1975) p. 642

    Google Scholar 

  64. Ch. Schlier, W. Vix: Chem. Phys.95, 401 (1985)

    Google Scholar 

  65. R. Johnsen, M.A. Biondi: J. Chem. Phys.61, 2112 (1974)

    Google Scholar 

  66. N.G. Adams, D. Smith, E. Alge: J. Chem. Phys.81, 1778 (1984)

    Google Scholar 

  67. N.G. Adams, D. Smith: Astrophys. J.248, 373 (1981)

    Google Scholar 

  68. N. Cohen, K.R. Westberg: J. Phys. Chem. Ref. Data12, 531 (1983)

    Google Scholar 

  69. D.L. Baulch, D.D. Drysdale, D.G. Horne, A.C. Lloyd:Evaluated Kinetic Data for High Temperature Reactions, Vol. 1 (CRS Press, Cleveland, OH 1972) p. 289

    Google Scholar 

  70. K.P. Lynch, J.V. Michael: Int. J. Chem. Kinet.10, 233 (1978)

    Google Scholar 

  71. H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron: J. Phys. Chem. Ref. Data6, Suppl. 1 (1977)

    Google Scholar 

  72. A. Lifshitz, M. Frenklach: J. Chem. Phys.67, 2803 (1977)

    Google Scholar 

  73. S.W. Benson:The Foundation of Chemical Kinetics (McGraw-Hill, New York 1960) p. 446

    Google Scholar 

  74. M.U. Kislyuk, I.I. Tret'yakov: Dokl. Akad. Nauk. SSSR208, 1134 (1973)

    Google Scholar 

  75. K.M. Kislyuk, I.I. Tret'yakov: Kinet. Katal.15, 710 (1974)

    Google Scholar 

  76. K.M. Sancier, H. Wise: J. Chem. Phys.51, 1434 (1969)

    Google Scholar 

  77. S.O. Thompson, O.A. Schaeffer: J. Am. Chem. Soc.80, 553 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

U.S. Department of Energy Document No. DE-AS02-76ER03416-37

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazejowski, J., Lampe, F.W. CO2-laser-induced breakdown in mono- and diatomic gases. Appl. Phys. B 41, 109–117 (1986). https://doi.org/10.1007/BF00702662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702662

PACS

Navigation