Skip to main content

Laser phase and frequency stabilization using an optical resonator

Abstract

We describe a new and highly effective optical frequency discriminator and laser stabilization system based on signals reflected from a stable Fabry-Perot reference interferometer. High sensitivity for detection of resonance information is achieved by optical heterodyne detection with sidebands produced by rf phase modulation. Physical, optical, and electronic aspects of this discriminator/laser frequency stabilization system are considered in detail. We show that a high-speed domain exists in which the system responds to the phase (rather than frequency) change of the laser; thus with suitable design the servo loop bandwidth is not limited by the cavity response time. We report diagnostic experiments in which a dye laser and gas laser were independently locked to one stable cavity. Because of the precautions employed, the observed sub-100 Hz beat line width shows that the lasers were this stable. Applications of this system of laser stabilization include precision laser spectroscopy and interferometric gravity-wave detectors.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brooks III, Y. Gursel: InLaser Spectroscopy V, ed. by A. R. W. McKellar, T. Oka, B. P. Stoicheff (Springer, Berlin, Heidelberg, New York 1981) pp. 33–40

    Google Scholar 

  2. 2.

    A. D. White: IEEE J. QE-1, 349–357 (1965)

    Google Scholar 

  3. 3.

    R. L. Barger, M. S. Sorem, J. L. Hall: Appl. Phys. Lett.22, 573–575 (1973)

    Google Scholar 

  4. 4.

    Yu V. Troitskii: Sov. J. Quant. Electron.8, 628–631 (1978). This is apparently the first publication analyzing the advanrages of reflection-mode operation of a cavity-type laser stabilizer

    Google Scholar 

  5. 5.

    R. E. Grove, F. Y. Wu, S. Ezekiel: Opt. Eng.13, 531–533 (1974)

    Google Scholar 

  6. 6.

    L. A. Hackel, R. P. Hackel, S. Ezekiel: Metrologia13, 141–143 (1977)

    Google Scholar 

  7. 7.

    R. L. Barger, J. B. West, T. C. English: Appl. Phys. Lett.27, 31–33 (1975)

    Google Scholar 

  8. 8.

    J. Helmcke, S. A. Lee, J. L. Hall: Appl. Opt.21, 1686–1694 (1982)

    Google Scholar 

  9. 9.

    J. L. Hall: Unpublished, and in Proc. Int. Conf. on Lasers, Beijing, China (May 1980)

  10. 10.

    J. L. Hall, H. P. Layer, R. D. Deslattes: “An acoustic-optic frequency and intensity control system for cw lasers”, 1977 Conference on Laser Engineering and Applications, Digest p. 45, IEEE Cat No. 77CH 1207-O Laser

  11. 11.

    Closely related considerations have been discussed in connection with frequency multiplication. See F. L. Walls, A. deMarchi: IEEE Trans. IM-24, 210–217 (1975)

    Google Scholar 

  12. 12.

    FM sideband methods in the optical domain were developed independently by G. C. Bjorklund: Opt Lett.5, 15–17 (1980) and used for spectroscopy by G. C. Bjorklund, M. D. Levenson: Phys. Rev. A24, 166–169 (1981); and by J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson: Appl. Phys. Lett.39, 680–682 (1981) and inLaser Spectroscopy V, ed. by A. R. W. McKellar, T. Oka, B. P. Stoicheff (Springer, Berlin, Heidelberg, New York 1981) pp. 15–24

    Google Scholar 

  13. 13.

    R. V. Pound: Rev. Sci. Instrum.17, 490–505 (1946)

    Google Scholar 

  14. 14.

    R. V. Pound: Private communication (September 1979)

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drever, R.W.P., Hall, J.L., Kowalski, F.V. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983). https://doi.org/10.1007/BF00702605

Download citation

PACS

  • 06
  • 07.60
  • 07.65