Abstract
We describe a new and highly effective optical frequency discriminator and laser stabilization system based on signals reflected from a stable Fabry-Perot reference interferometer. High sensitivity for detection of resonance information is achieved by optical heterodyne detection with sidebands produced by rf phase modulation. Physical, optical, and electronic aspects of this discriminator/laser frequency stabilization system are considered in detail. We show that a high-speed domain exists in which the system responds to the phase (rather than frequency) change of the laser; thus with suitable design the servo loop bandwidth is not limited by the cavity response time. We report diagnostic experiments in which a dye laser and gas laser were independently locked to one stable cavity. Because of the precautions employed, the observed sub-100 Hz beat line width shows that the lasers were this stable. Applications of this system of laser stabilization include precision laser spectroscopy and interferometric gravity-wave detectors.
Similar content being viewed by others
References
R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brooks III, Y. Gursel: InLaser Spectroscopy V, ed. by A. R. W. McKellar, T. Oka, B. P. Stoicheff (Springer, Berlin, Heidelberg, New York 1981) pp. 33–40
A. D. White: IEEE J. QE-1, 349–357 (1965)
R. L. Barger, M. S. Sorem, J. L. Hall: Appl. Phys. Lett.22, 573–575 (1973)
Yu V. Troitskii: Sov. J. Quant. Electron.8, 628–631 (1978). This is apparently the first publication analyzing the advanrages of reflection-mode operation of a cavity-type laser stabilizer
R. E. Grove, F. Y. Wu, S. Ezekiel: Opt. Eng.13, 531–533 (1974)
L. A. Hackel, R. P. Hackel, S. Ezekiel: Metrologia13, 141–143 (1977)
R. L. Barger, J. B. West, T. C. English: Appl. Phys. Lett.27, 31–33 (1975)
J. Helmcke, S. A. Lee, J. L. Hall: Appl. Opt.21, 1686–1694 (1982)
J. L. Hall: Unpublished, and in Proc. Int. Conf. on Lasers, Beijing, China (May 1980)
J. L. Hall, H. P. Layer, R. D. Deslattes: “An acoustic-optic frequency and intensity control system for cw lasers”, 1977 Conference on Laser Engineering and Applications, Digest p. 45, IEEE Cat No. 77CH 1207-O Laser
Closely related considerations have been discussed in connection with frequency multiplication. See F. L. Walls, A. deMarchi: IEEE Trans. IM-24, 210–217 (1975)
FM sideband methods in the optical domain were developed independently by G. C. Bjorklund: Opt Lett.5, 15–17 (1980) and used for spectroscopy by G. C. Bjorklund, M. D. Levenson: Phys. Rev. A24, 166–169 (1981); and by J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson: Appl. Phys. Lett.39, 680–682 (1981) and inLaser Spectroscopy V, ed. by A. R. W. McKellar, T. Oka, B. P. Stoicheff (Springer, Berlin, Heidelberg, New York 1981) pp. 15–24
R. V. Pound: Rev. Sci. Instrum.17, 490–505 (1946)
R. V. Pound: Private communication (September 1979)