Advertisement

Marine Biology

, Volume 112, Issue 2, pp 319–326 | Cite as

Mitochondrial DNA analyses of the red rock lobsterJasus edwardsii supports an apparent absence of population subdivision throughout Australasia

  • J. R. Ovenden
  • D. J. Brasher
  • R. W. G. White
Article

Abstract

Nucleotide sequence polymorphism in the mitochondrial genomes of 132 adult lobsters (Jasus edwardsil) collected from widespread locales across southern Australia and from New Zealand (April 1989 to June 1990) was assayed, using six restriction endonucleases, to test the hypothesis of a lack of genetic subdivision in a marine species with a long-lived planktonic larva. The mean amount of mtDNA diversity among the 132 mitochondrial genomes was 0.77%. Phenetic clustering and gene-diversity analyses, as well as pairwise comparison of the genetics of specimens from each, or grouped, locales did not detect the presence of genetic subdivision across approx 4600 km of Southern Ocean habitats. The inability of this study to detect population subdivision does not preclude fortutitous, active or habitat-specific larval settlement from producing and maintaining hidden groupings. If genetic homogeneity is maintained in this species by larval dispersal in ocean currents flowing to the east, then westerly populations may deserve special conservation status.

Keywords

Mitochondrial Genome Southern Ocean Larval Settlement Larval Dispersal Population Subdivision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. A. Rev. Evol. Syst. 18: 489–522Google Scholar
  2. Avise, J. C., Vrjenhoek, R. C. (1987). Mode of inheritance and variation of mitochondrial DNA in hybridogenetic fishes of the genusPoeciliopsis. Molec. Biol. Evolut. 4: 514–525Google Scholar
  3. Booth, J. D., Street, R. J., Smith, P. J. (1990). Systematic status of the rock lobstersJasus edwardsii from New Zealand andJ. novaehollandiae from Australia. N. Z. Jl mar. Freshwat. Res. 24: 239–249Google Scholar
  4. Brasher, D. J., Ovenden, J. R., White, R. W. G. (1991). Mitochondrial DNA variation and phylogenetic relationships ofJasus spp. (Decapoda: Palinuridae). J. Zool. Lond. (in press)Google Scholar
  5. Edwards, C. A., Skibinski, D. O. F. (1987). Genetic variation of mitochondrial DNA in mussel (Mytilus edulis andM. galloprovincialis) populations from South West England and South Wales. Mar. Biol 94: 547–556Google Scholar
  6. Erlich, H. A. (1989). PCR technology — principles and applications for DNA amplifications Stockton Press, New YorkGoogle Scholar
  7. George, R. W. (1969). Natural distribution and speciation of marine animals. J. Proc. R. Soc. West. Aust. 52: 33–40Google Scholar
  8. George, R. W., Kensler, C. B. (1970). Recognition of marine spiny lobsters of theJasus lalandii group (Crustacea: Decapoda: Palinuridae). N. Z. Jl mar. Freshwat. Res. 4: 292–311Google Scholar
  9. George, R. W., Main, A. R. (1967). The evolution of spiny lobsters (Palinuridae): study of evolution in the marine environment. Evolution 21: 803–820Google Scholar
  10. Lansman, R. A., Avise, J. C., Huettel, M. D. (1983). Critical experimental test of the possibility of ‘paternal leakage’ of mitochondrial DNA. Proc. natn. Acad. Sci. U.S.A. 80: 1969–1971Google Scholar
  11. Lewis, R. K. (1983). The southern rock lobster. In: Tyler M. J., Twidale, C. R., Ling, J. K., Holmes, J. W. (eds) Natural history of the south east. Royal Society of South Australia Inc., Adelaide, p. 177–181Google Scholar
  12. Lynch, M., Crease, T. J. (1990) The analysis of population survey data on DNA sequence variation. Molec. Biol Evolut. 7:377–394Google Scholar
  13. Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  14. Nei, M., Jin, L. (1989). Variances of the average numbers of nucleotide substitutions within and between populations. Molec. Biol Evolut. 6: 290–300Google Scholar
  15. Nei, M., Stephens, J. C., Saitou, N. (1985). Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Molec. Biol. Evolut. 2: 66–85Google Scholar
  16. Nei, M., Tajima, F. (1983). Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics, Austin, Tex. 105: 207–217Google Scholar
  17. Ovenden, J. R. (1990) Mitochondrial DNA and marine stock assessment: a review. Aust. J. mar. Freshwat. Res 41: 835–853Google Scholar
  18. Ovenden, J. R., Bywater, R., White, R. W. G. (1991). A program for the estimation of restriction endonuclease site positions from restriction fragment size and number — an aid for mitochondrial DNA analysis. J. Hered. (in press)Google Scholar
  19. Ovenden, J. R., White, R. W. G. (1990). Mitochondrial and allozyme genetics of incipient speciation in a landlocked population ofGalaxias truttaceus (Pisces: Galaxidae). Genetics, Austin, Tex. 124: 701–716Google Scholar
  20. Palumbi, S. R., Wilson A. C. (1990). Mitochondrial DNA diversity in the sea urchins. Evolution 44: 403–415Google Scholar
  21. Phillips B. F., McWilliam, P. S. (1986). The pelagic phase of spiny lobster development. Can. J. Fish. aquat. Sciences 43: 2153–2163Google Scholar
  22. Pollock, D. E. (1990). Palaeoceanography and speciation in the spiny lobster genusJasus. Bull. mar. Sci. 46: 387–405Google Scholar
  23. Rand, D. M., Harrison, R. G. (1989). Molecular population genetics of mtDNA size variation in crickets. Genetics, Austin, Tex. 121: 551–569Google Scholar
  24. Reeb, C. A., Avise, J. C. (1990). A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster,Crassostrea virginica. Genetics, Austin, Tex. 124: 397–406Google Scholar
  25. Richardson, B. J., Baverstock, P. R., Adams, M. (1986). Allozyme electrophoresis. A handbook for animal systematics and population structure. Academic Press, SydneyGoogle Scholar
  26. Saunders, N. C., Kessler, L. G., Avise, J. C. (1986). Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab,Limulus polyphemus. Genetics, Austin, Tex. 112: 613–627Google Scholar
  27. Smith, P. J., McKoy, J. L., Machin, P. J. (1980). Genetic variation in the rock lobstersJasus edwardsii andJasus novaehollandiae. N. Z. Jl mar. Freshwat. Res. 14: 55–63Google Scholar
  28. Street, R. J. (1969). The New Zealand crayfishJasus edwardsii (Hutton 1875). Tech. Rep. N. Z. mar. Dep. Fish. 30: 1–31Google Scholar
  29. Takahata, N., Palumbi, S. R. (1985). Extranuclear differentiation and gene flow in the finite island model. Genetics, Austin, Tex. 109: 441–457Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. R. Ovenden
    • 1
  • D. J. Brasher
    • 1
  • R. W. G. White
    • 1
  1. 1.Fish Research Group, Department of ZoologyUniversity of TasmaniaHobartAustralia

Personalised recommendations