Marine Biology

, Volume 112, Issue 2, pp 229–235 | Cite as

Riding Langmuir circulations and swimming in circles: a novel form of clustering behavior by the scyphomedusaLinuche unguiculata

  • K. J. Larson


Linuche unguiculata (Schwartz) seasonally forms patches in the Caribbean Sea and Indo-Pacific Ocean. Eighteen patches of medusae varying from about 500 m2 to nearly 1 km2 in area, were documented along the Belize barrier reef in March and April 1987, April 1988, and March and April 1990. The shape of each patch and the inter-medusa distances varied with wind velocity. At low wind speed (<4 m s-1) patches were elliptical or circular and the individual medusae were separated by distances of 0.5 m, whereas at higher speeds windrows were evident and medusae were closer together. Windrows probably form by horizontal advection owing to convergence by Langmuir circulations. Because individual patches might exist for up to 4 mo as they drift downwind, and because winds of sufficient speed to produce Langmuir circulations do not always occur, a mechanism is necessary to maintain patch integrity during calms. In situ observations and in vitro video recording showed that the medusae swam in horizontal, near-surface, circular, clockwise trajectories. Although swimming speed was relatively high (up to 8 cm s-1). net displacement velocity can be low (<1 cm s-1). Thus, circular swimming probably reduces cluster breakup. Patch formation probably improves reproductive success by reducing sperm dilution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Agassiz, A., Mayer, A.G. (1899). Acalephs from the Fiji Islands. Bull. Mus. comp. Zool. Harv. 32: 157–189Google Scholar
  2. Beebe, W. (1928). Beneath tropic seas. G. P. Putnam's Sons, New YorkGoogle Scholar
  3. Bigelow, H.B. (1928). Scyphomedusae of the Arcturus oceanographic expedition. Zoologica, N.Y. 8: 495–524Google Scholar
  4. Bigelow, H.B. (1938). Plankton of the Bermuda oceanographic expeditions. VIII. Medusae taken during the years 1929 and 1930. Zoologica, N.Y. 23: 99–189Google Scholar
  5. Conklin, E.G. (1908). The habits and early development ofLinerges mercurius. Publs Carnegie Instn 103: 153–170Google Scholar
  6. Fewkes, J.W. (1882). Notes on Acalaphae from the Tortugas, with a description of new genera and species. Bull. Mus. comp. Zool. Harv. 9: 251–289Google Scholar
  7. Hamner, W.M., Carlton, J.H. (1979). Copepod swarms: attributes and role in coral reef ecosystems. Limnol. Oceanogr. 24: 1–14Google Scholar
  8. Hamner, W.M., Hamner, P.P., Strand, S.W., Gilmer, R.W. (1983). Behavior of Antarctic krillEuphausia superba: chemoreception, feeding, schooling, and molting. Science, N.Y. 220: 433–435Google Scholar
  9. Hamner, W.M., Hauri, I.R. (1981). Long-distance horizontal migrations of zooplankton (Scyphomedusae:Mastigias). Limnol. Oceanogr. 26: 414–423Google Scholar
  10. Hamner, W.M., Schneider, D. (1986). Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnol. Oceanogr. 31: 171–177Google Scholar
  11. Hamner, W.M., Strand, S.W., Matsumoto, G.I., Hamner, P.P. (1987). Ethological observations on the foraging behavior of the etenophoreLeucothea sp. in the open sea. Limnol. Oceanogr. 32: 645–652Google Scholar
  12. Haury, L.R., Weibe, P.H. (1982). Fine-scale multispecies aggregations of oceanic zooplankton. Deep-Sea Res. 29: 915–921Google Scholar
  13. Kikinger, R. (1983). Biologie der Mediterranen ScyphomeduseCotylorhiza tuberculata (Macri, 1778). Ph. D. thesis. Universität WienGoogle Scholar
  14. Kremer P., Costello, J., Canino, M. (1990). Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusaLinuche unguiculata. Limnol. Oceanogr 35: 609–624Google Scholar
  15. Lal Mohan, R.L. (1965). On a swarm of salps,Pegea confoederata (Forskål), from the Gujarat coast. J. mar. Biol. Ass. India 7: 201–202Google Scholar
  16. Larson, R. J. (1982). Medusae (Cnidaria) from Carrie Bow Cay, Belize. Smithson. Contr. mar. Sci. 12: 253–258Google Scholar
  17. Longhurst, A.R. (1981). Significance of spatial variability. In: Longhurst, A.R. (ed.) Analysis of marine ecosystems. Academic Press, New York, p. 415–491Google Scholar
  18. Mackas, D. L., Denman, K. L., Abbott, M.R. (1985). Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci 37: 652–674Google Scholar
  19. Malej, A. (1989). Behavior and trophic ecology of the jellyfishPelagia noctiluca (Forskål, 1775). J. exp. mar. Biol. Ecol. 126: 259–270Google Scholar
  20. Mayer A.G. (1910). Medusae of the world. Scyphomedusae. Vol. III. Carnegie Institute, Washington, p. 499–735Google Scholar
  21. O'Brien, D. P. (1988a). Direct observations of clustering (schooling and swarming) behavior in mysids (Crustacea: Mysidacea). Mar. Ecol. Prog. Ser. 42: 235–246Google Scholar
  22. O'Brien, D. P. (1988b). Surface schooling behaviour of the coastal krillNyctiphanes australis (Crustacea:Euphausiacea) off Tasmania, Australia. Mar. Ecol. Prog. Ser. 42: 235–246Google Scholar
  23. Pennington, J.T. (1985). The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. mar. biol. Lab., Woods Hole 169: 417–430Google Scholar
  24. Price, J.H. (1988). Swimming behavior of krill in relation to algal patches in a mesocosm: a video analysis. EOS Trans. Am. geophys. Un. 68: p. 1732Google Scholar
  25. Roberts, O.W. (1827). Voyages and excursions on the east coast and interior of Central America. Facsimile published by the University of Florida Press, GainesvilleGoogle Scholar
  26. Roosen-Runge, E.C. (1962). On the biology of sexual reproduction in the hydromedusae genusPhialidium Leuckart. Pacif. Sci. 16: 15–24Google Scholar
  27. Russell, F.S. (1970). Medusae of the British isles. Vol. II. Pelagic Scyphozoa. Cambridge University Press, LondonGoogle Scholar
  28. Rützler, K., Ferraris, J.D. (1982). Terrestrial environment and climate, Carrie Bow Cay, Belize. Smithson. Contr. mar. Sci. 12: 77–91Google Scholar
  29. Stavn, R.H. (1971). The horizontal-vertical distribution hypothesis: Langmuir circulations andDaphnia distribution. Limnol. Oceanogr. 16: 453–466Google Scholar
  30. Stevensen, J.C. (1962). Distribution and survival of herring larvae (Clupea pullasii Valenciennes) in British Columbia waters. J. Fish. Res. Bd Can. 19: 735–810Google Scholar
  31. Weller R.A., Price, J.F. (1988). Langmuir circulation within the oceanic mixed layer. Deep-Sea Res 35: 711–747Google Scholar
  32. Wittmann, K.J. (1976) Modification of association and swarming in the north Adriatic Mysidacea in relation to habitat and interacting species. In: Keegan, B.F., Ceidigh, P.O., Boaden, P.J.S. (eds.) Biology of benthic organisms. Pergamon Press, Oxford, p. 605–612Google Scholar
  33. Yasuda, T. (1970). Ecological studies on the jellyfishAurelia aurita (L), in Urazoko Bay Fukin Prefecture. V. Vertical distribution of the medusae. A. Rep. Noto mar. Biol. Lab. 10: 15–22Google Scholar
  34. Zavodnik, D. (1987). Spatial aggregations of the swarming jellyfishPelagia noctiluca (Scyphozoa). Mar. Biol. 94: 265–269Google Scholar
  35. Zeldis, J.R., Jillett, J.B. (1982). Aggregation of pelagicMunida gregaria (Fabricius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4: 839–857Google Scholar
  36. Zelickman, E.A. (1969). Structural features of mass aggregations of jellyfish. Oceanology, Wash. 9: 558–564Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • K. J. Larson
    • 1
  1. 1.Harbor Branch Oceanographic InstitutionFort PierceUSA

Personalised recommendations