Advertisement

Marine Biology

, Volume 112, Issue 2, pp 223–228 | Cite as

Inorganic nitrogen metabolism inUlva rigida illuminated with blue light

  • A. Corzo
  • F. X. Niell
Article

Abstract

Inorganic nitrogen metabolism in blue light was studied for the green algaUlva rigida C. Agardh collected in the south of Spain (Punta Carnero, Algeciras) in the winter of 1987. NH4+ has been reported to inhibit NO3- uptake; however,U. rigida showed a net NO3- uptake even when the NH4+ concentration of the external medium was three or four times greater than the concentration of NO3-. NO3- uptake rates were similar in both darkness and in blue light of various photon fluence rates (PFR) ranging from 17 to 160 μmol m-2 s-1. Since NO3- uptake is an active mechanism involving the consumption of ATP, respiratory metabolism can provide enough ATP to maintain the energetic requirement of NO3- transport even in darkness. In contrast, NO3- reduction inU. rigida was highly dependent on the net photosynthetic rate. After 7 h in blue light, intracellular NO3- concentrations ([NO3-] i ) were higher in specimens exposed to intensities below the light compensation point (LCP) than in those incubated at a PFR above the LCP. When PFR is below the light compensation point, NO3- reduction is low, probably because all the NADH produced by the cells is oxidized in the respiratory chain in order to produce ATP to maintain a steady NO3- transport rate. The total nitrogen (TN) and carbon (TC) contents decreased from darkness to 33 μmol m-2 s-1 in blue light. In this range, catabolic processes prevailed over anabolic ones. In contrast, increases in TN and TC contents were observed above the light compensation point. The C : N ratio increased with light intensity, reaching a stable value of 17 at 78 μmol m-2 s-1 in blue light. Intracellular NO3- concentration and NO3- reduction appear to be directly controlled by light intensity. This external control of [NO3-]i and the small capacity ofU. rigida to retain incorporated NO3-, NO2- and NH4+ ions may explain its nitrophilic character.

Keywords

Light Intensity NADH Total Nitrogen Uptake Rate Photosynthetic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aslam, M., Huffaker, R. C. (1984). Dependency of nitrate reduction on soluble carbohydrates in primary leaves of barley under aerobic conditions. Pl. Physiol. 75: 623–628Google Scholar
  2. Azuara, M. P., Aparicio, P. J. (1983). In vivo blue-light activation ofChlamydomonas reinhardii nitrate reductase. Pl. Physiol. 71: 286–290Google Scholar
  3. Azuara, M. P., Aparicio, P. J. (1985). Spectral dependence of photoregulation of inorganic nitrogen metabolism inChlamydomonas reinhardii. Pl. Physiol. 77: 95–98Google Scholar
  4. Beevers, L., Hagemann, R. H. (1972). The role of light in nitrate metabolism in higher plants. Photophysiol. 7: 85–113Google Scholar
  5. Bird, K. T., Habig, C., Debusk, T. (1982). Nitrogen allocation and storage patterns inGracilaria tikvahiae (Rhodophyta). J. Phycol. 18: 344–348Google Scholar
  6. Chapman, A. R. O., Craigie, J. S. (1977). Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205Google Scholar
  7. DeManche, J. M., Curl, H. C., Jr., Lundy, D. W., Donaghay, P. L. (1979). The rapid response of the marine diatomSkeletonema costatum to the changes in external and internal nutrient concentration. Mar. Biol. 53: 323–333Google Scholar
  8. Di Martino Rigano, V., Martello, A., Di Martino, M., Rigano, C. (1985). Effects of CO2 and phosphate deprivation on the control of nitrate, nitrite and ammonium metabolism inChlorella. Physiologia Pl. 63: 241–246Google Scholar
  9. Dugdale, R. G. (1976). Nutrient cycles. In: Cushing, D. H., Walsh, J. J. (eds.) The ecology of the scas. Saunders, Philadelphia, p. 141–172Google Scholar
  10. Eisele, R., Ullrich, W. R.: (1977) Effect of glucose and CO2 on nitrate uptake and coupled OH- flux inAmkistrodesmus braunii. Pl. Physiol 59: 18–21Google Scholar
  11. Eppley, R. W., Coatsworth, J. L. (1968). Nitrate and nitrite uptake byDyctylum brightwellii. Kinetics and mechanisms. J. Phycol 4: 151–156Google Scholar
  12. Eppley, R. W., Packard, T. T., MacIsaac, J. J. (1970). Nitrate reductase in Peru current phytoplankton. Mar. Biol. 6: 195–199Google Scholar
  13. Falkowski, P. G. (1975). Nitrate uptake in marine phytoplankton: comparison of half saturation constants from seven species. Limnol. Oceanogr. 20: 412–417Google Scholar
  14. Falkowski, P. G. (1977). A theoretical description of nitrate uptake kinetics in marine phytoplankton based on bisubstrate kinetics. J. theor. Biol. 64:375–379Google Scholar
  15. Falkowski, P. G. (1983). Enzymology of nitrogen assimilation. In: Carpenter, E. J., Capone, D. G. (eds.) Nitrogen in the marine environment. Academic Press, New York, p. 839–868Google Scholar
  16. Granstedt, R. C., Huffaker, R. C. (1982). Identification of the leaf vacuole as a major nitrate storage pool. Pl. Physiol 70: 410–413Google Scholar
  17. Grant, B. R., Tarner, J. M. (1969). Light-stimulated nitrate assimilation in several species of algac. Comp. Biochem. Physiol 29: 995–1004Google Scholar
  18. Hanisak, M. D. (1983). The nitrogen relationships of marine macroalgae. In: Carpenter, E. J., Capone, D. G. (eds.) Nitrogen in the marine environment. Academic Press, New York, p. 699–730Google Scholar
  19. Harder, R. (1923). Über die Bedeutung von Lichtintensität und Wellenläge für die Assimilation färbiger Algen. Z. Bot. 15: 305–355Google Scholar
  20. Hattori, A. (1962). Light-induced reduction of nitrate, nitrite and hydroxylamine in a blue-green alga,Anabaena cylindrica. Pl. Cell. Physiol., Tokyo 8: 327–337Google Scholar
  21. Jeffrey, S. W., Humphrey, G. T. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194Google Scholar
  22. Kessler E. (1964). Nitrate assimilation by plants. A. Rev. Pl. Physiol. 15: 57–72Google Scholar
  23. Kirk, J. T. O. (1983). Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  24. Kowallik, W (1982). Blue light effects on respiration. A. Rev. Pl. Physiol. 33: 51–72Google Scholar
  25. Larsson, C. M., Andersson, M. (1981). Uptake and photoreduction of NO3 - and NO2 - inScenedesmus: interactions with CO2 fixation. In: Akoyunoglou, G. (ed.) Photosynthesis IV. Regulation of carbon metabolism. Balaban, Philadelphia, p. 741–750Google Scholar
  26. Laycock, M. V., Craigie, J. S. (1977). The occurrence and seasonal variation of gigartine and L-citrullinyl-L-arginine inChondrus crispus Stackh. Can. J. Biochem. 55: 27–30Google Scholar
  27. Lapointe, B. E. (1981). The effects of light and nitrogen on growth, pigment content, and biochemical composition ofGracilaria foliifera v. angustissima (Gigartinales, Rhodophyta). J. Phycol. 17: 90–95Google Scholar
  28. Lapointe, B. E., Tenore, K. R. (1981). Experimental outdoor studies withUlva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J. exp. mar. Biol. Ecol. 53: 135–152Google Scholar
  29. Maclsaac, J. J., Dugdale, R. C. (1972). Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res. 19: 209–232Google Scholar
  30. McCarthy, J. J., (1981). The kinetics of nutrient utilization. Can. Bull. Fish. aquat. Sciences 210: 211–233Google Scholar
  31. McClure, P. R., Kochian, L. V., Spanswick, R. M., Shaff, J. E. (1990a). Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Pl. Physiol. 93: 281–289Google Scholar
  32. McClure, P. R., Kochian, L. V., Spanswick, R. M., Shaff, J. E. (1990b). Evidence for cotransport of nitrate and protons in maize roots. II. Measurement of NO3 - and H+ fluxes with ion-selective microelectrodes. Pl. Physiol. 93: 290–294Google Scholar
  33. Olson, R. J., Beeler Soo Hoo, J., Kiefer, D. A. (1980). Steady-state growth of the marine diatomThalassiosira pseudonana. Uncoupled kinetics of nitrate uptake and nitrite production. Pl. Physiol. 66: 383–389Google Scholar
  34. Packard, T. T. (1973). The light dependence of nitrate reductase activity in marine phytoplankton. Limnol. Oceanogr. 18: 466–469Google Scholar
  35. Rabinowitch, E. I. (1945). Photosynthesis and related processes. Interscience Publishers, New YorkGoogle Scholar
  36. Rees, T. A. V., Cresswell, R. C., Syrett, P. J. (1980). Sodium-dependent uptake of nitrate and urea by a marine diatom. Biochem. biophys. Acta 596: 141–144Google Scholar
  37. Romero, J. M., Lara, C., Guerrero, M. G. (1985). Dependence of nitrate utilization upon active CO2 fixation inAnacystis nidulans: a regulatory aspect of the interaction between photosynthetic carbon and nitrogen metabolism. Archs Biochem. Biophys. 237: 396–401Google Scholar
  38. Serra, J. L., Llama, M. J., Cadenas, E. (1978). Nitrate utilization by the diatomSkeletonema costatum. II. Regulation of nitrate uptake. Pl. Physiol. 62: 991–994Google Scholar
  39. Slawyk, G., MacIsaac, J. J. (1972). Comparison of two automated ammonium methods in a region of coastal upwelling. Deep-Sea Res 19: 521–524Google Scholar
  40. Shinn, M. B. (1941). A colorimetric method for the determination of nitrite. Ind. Engng Chem. analyt. Edn 13: 33–35Google Scholar
  41. Syrett, P. J. (1981). Nitrogen metabolism of microalgae. Can. Bull. Fish. aquat. Sciences 210: 182–210Google Scholar
  42. Thibaud, J. B., Grignon, C. (1981). Mechanisms of nitrate uptake in corn roots. Pl. Sci. Lett 22: 279–289Google Scholar
  43. Ullrich, W. R., Novacky, A. (1981). Nitrate dependent membrane potential changes and their induction inLemna gibba G.1, Pl. Sci. Lett. 22: 211–217Google Scholar
  44. Vennesland, B., Guerrero, M. G. (1979). Reduction of nitrate and nitrite. In: Gibbs, M., Latzko, E. (eds.) Photosynthesis. II. Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology. New Ser. Vol. 6. Springer Verlag, Berlin Heidelberg, p. 425–444Google Scholar
  45. Voskresenskaya, N. P. (1971). Blue light and carbon metabolism. A. Rev. Pl. Physiol. 23: 219–234Google Scholar
  46. Wheeler, P. A. (1980). Use of methylammonium as an ammonium analogue in transport and assimilation studies withCyclotella cryptica (Bacillariophyceae). J. Phycol. 16: 328–334Google Scholar
  47. Wheeler, P. A., Hellebust, J. A. (1981). Uptake and concentration of alkylamines by a marine diatom. Effects of H+ and K+ and implications for the transport and accumulation of weak bases. Pl. Physiol. 67: 367–372Google Scholar
  48. Wood, E. D., Armstrong, F. A. J., Richards, F. A. (1967). Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K 47: 23–31Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Corzo
    • 1
  • F. X. Niell
    • 1
  1. 1.Department of Ecology, Faculty of ScienceUniversity of MálagaMálagaSpain

Personalised recommendations