Glycoconjugate Journal

, Volume 10, Issue 3, pp 247–250 | Cite as

Developmental changes in neutral glycosphingolipids of mouse placenta

  • Jiri Svejcar
  • Sarah Ehrlich-Rogozinski
  • Dorothea Riedel
  • Johannes Müthing
  • Nathan Sharon
Papers

Abstract

The mammalian placenta is a unique organ for the study of developmental changes. Placentas of laboratory animals such as the mouse allow for the determination of the exact stage of pregnancy, which cannot be achieved with human placenta. In this study, neutral glycosphingolipids were isolated from mouse (inbred strain C57BL/6) placentas, from day 10 to day 18 of gestation, and were separated by high performance thin layer chromatography. Densitometric measurements after orcinol staining showed, at day 10 of gestation, the presence of mono-, tetra-, tri- and dihexosylceramide in decreasing quantities, as well as four unidentified spots. On day 12, the glycosphingolipid composition changed with the disappearance of the unidentified spots and the appearance of an orcinol positive spot migrating similarly to the Forssman antigen; no further changes occurred between days 12 and 18 of gestation. The identity of the Forssman-like glycosphingolipid with the Forssman antigen was established by binding of125I labelledHelix pomatia agglutinin (α-GalNAc specific) to glycosphingolipids separated on high performance thin layer chromatography plates, and by the reaction of the isolated glycosphingolipid with a monoclonal anti-Forssman antibody. The appearance of the Forssman antigen at day 12 of gestation coincided with the day of final maturation of the mouse placenta and subsequent cessation of growth, suggesting a possible role of the glycosphingolipid during embryonic development.

Keywords

Forssman antigen neutral glycosphingolipids mouse placenta developmental changes 

Abbreviations

asialo-GM1

Gal β3GalNAcβ4Galβ4Glcβ1Cer

BCIP

5-bromo-4-chloro-3-indolylphosphate

DHC

lactosylceramide, Galβ4Glcβ1Cer

Forssman antigen

GalNAcα3GalNAcβ3Galα4Galβ4Glcβ1Cer

globoside

GalNAcβ3Galα4Galβ4Glcβ1Cer

GSL

glycosphingolipids

HPA

Helix pomatia agglutinin

HPTLC

high performance thin layer chromatography

MHC

galactosylceramide, Galβ1Cer

MHC

glucosylceramide, Glcβ1Cer

PBS

phosphate-buffered saline

PNA

peanut agglutinin

PVP

poly(vinylpyrrolidone), mol. wt 40 000

SBA

soybean agglutinin

THC

trihexosylceramide, Galα4Galβ4Glcβ1Cer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hakomori S (1986)Scient Amer 254 (5):44–53.Google Scholar
  2. 2.
    Hakomori S (1990)J Biol Chem 265:18713–16.Google Scholar
  3. 3.
    Hakomori S (1984)Trends Biochem Sci 9:453–58.Google Scholar
  4. 4.
    Eggens I, Fenderson B, Toyokuni T, Dan B, Stroud M, Hakomori S (1989)J Biol Chem 264:9476–84.Google Scholar
  5. 5.
    Svennerholm L (1965)Acta Chem Scand 19:1506–7.Google Scholar
  6. 6.
    Portoukalian J, Zwingelstein G (1981)Int J Tissue React 3–4:147–50.Google Scholar
  7. 7.
    Taki T, Matsuo KI, Yamamoto K, Matsubara T, Hayashi A, Abe T, Matsumoto M (1988)Lipids 23:192–98.Google Scholar
  8. 8.
    Levery SB, Nudelman ED, Salyan MEK, Hakomori S (1969)Biochemistry 28:7772–81.Google Scholar
  9. 9.
    Hansson GC, Wazniowska K, Rock JA, Ness PM, Kickler TS, Shirey RS, Niebyl JR, Zopf D (1988)Arch Biochem Biophys 260:168–76.Google Scholar
  10. 10.
    Jaffe CL, Ehrlich-Rogozinski S, Lis H, Sharon N (1977)FEBS Lett 82:191–96.Google Scholar
  11. 11.
    Byrne MC, Sbaschnig-Agler M, Aquino DA, Scalfani JR, Ledeen RW (1985)Anal Biochem 148:163–73.Google Scholar
  12. 12.
    Saito T, Hakomori S (1971)J Lipid Res 12:257–59.Google Scholar
  13. 13.
    Macher BA, Klock Jc (1980)J Biol Chem 255:2092–96.Google Scholar
  14. 14.
    Esselmann WJ, Laine RA, Sweeley CC (1972)Methods Enzymol 28:140–56.Google Scholar
  15. 15.
    Svennerholm L (1956)J Neurochem 1:42–53.Google Scholar
  16. 16.
    Greenwood FC, Hunter WM, Glover JS (1963)Biochem J 89:114–23.Google Scholar
  17. 17.
    Ehrlich-Rogozinski S, De Maio A, Lis H, Sharon N (1987)Glycoconjugate J 4:379–90.Google Scholar
  18. 18.
    Magnani IL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.Google Scholar
  19. 19.
    Bethke U, Müthing J, Schauder B, Conradt P, Mühlradt F (1986)J Immunol Meth 89:111–16.Google Scholar
  20. 20.
    Müthing J, Ziehr H (1990)Biomed Chromatogr 4:70–72.Google Scholar
  21. 21.
    Molin K, Fredman P, Svennerholm L (1986)FEBS Lett 205:51–54.Google Scholar
  22. 22.
    Torres BV, Smith DF (1988)Anal Biochem 170:1–21.Google Scholar
  23. 23.
    Theiler K (1972)The House Mouse Heidelberg: Springer-Verlag.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Jiri Svejcar
    • 1
  • Sarah Ehrlich-Rogozinski
    • 2
  • Dorothea Riedel
    • 1
  • Johannes Müthing
    • 1
    • 2
    • 3
  • Nathan Sharon
    • 1
    • 2
    • 3
  1. 1.Institute for Human GeneticsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
  2. 2.Department of Membrane Research and BiophysicsThe Weizmann Institute of ScienceRehovotIsrael
  3. 3.Institute for Cell Culture TechnologyUniversity of BielefeldBielefeldGermany

Personalised recommendations