Russian Chemical Bulletin

, Volume 42, Issue 7, pp 1276–1280 | Cite as

The 1st International Conference on Mechanochemistry

  • P. Yu. Butyagin
  • A. M. Dubnskaya
Information International Congresses, Conferences, Symposia, Meetings, and Seminars in the Field of Chemical Sciences held with the Participation of the Russian Academy of Sciences


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Boldyrev,Mechanical Activation of Solids.Google Scholar
  2. 2.
    P. Yu. Butyagin,The Kinetics of Mechanochemical Transformations in Solids.Google Scholar
  3. 3.
    E. Gutman,Surface Mechanochemistry of Crystalline Solids.Google Scholar
  4. 4.
    K. S. Suslick,The Mechanochemical Effects of Ultrasound.Google Scholar
  5. 5.
    E. Ivanov,Mechanical Alloying in Material Science.Google Scholar
  6. 6.
    E. L. Goldberg and S. V. Pavlov,The Model of Mechanical Activation.Google Scholar
  7. 7.
    A. M. Dubinskaya,The Theoretical and Technological Aspects of Polypeptides Disintegration.Google Scholar
  8. 8.
    M. Senna, K. Katayama, and Y. Saito,Mechanical Activation of Solid Surfaces with Well-Defined Stress Conditions.Google Scholar
  9. 9.
    U. Steinike, D. -Ch. Uecker, and K. Menning,The role of Mechanical Activation in the Preparation of Catalysts.Google Scholar
  10. 10.
    H. Bakker, L. M. Di, G. F. Zhou, and H. Yang,Non-Equilibrium Phase Transformations of Intermetallic Compounds by Ball Milling.Google Scholar
  11. 11.
    V. Gutman and G. Resch,Mechano-Electrochemistry and Corrosion of Metals.Google Scholar
  12. 12.
    M. Magini,Correlations Between Energy Transfer and End Products in the Mechanical Alloying Process.Google Scholar
  13. 13.
    K. Suzuki,The Nano-Scale Structure Evolution during Mechanical Milling of Metallic Alloys.Google Scholar
  14. 14.
    H. S. Chodakov and N. I. Redkina,Sorptional and Mecanochemical Aspects of Coal- Water Fuel Rheology.Google Scholar
  15. 15.
    A. N. Streletskii and A. B. Borunova,Kinetics and Mechanism of the Mechanochemical Synthesis of Oxide Ceramics Containing Flaky Compounds.Google Scholar
  16. 16.
    L. S. Zarkhin, S. V. Sheberstov, and L. I. Manevitch,The Numerical Molecular Dynamic Simulation of the Elementary Events of Breakdown and Subsequent Chopping of Polymeric Chains.Google Scholar
  17. 17.
    F. Miani, D. Basset, and P. Matteazzi,Modeling the Kinetics of Iron Carbides Mechanosynthesis Google Scholar
  18. 18.
    R. Karagedov,The Mechanism of Mechanochemical Synthesis in Oxide Systems.Google Scholar
  19. 19.
    A. Ikekawa,Study of the Mechanochemical Chain Scission of Polyvinylpyrrolidone by Computer Simulation.Google Scholar
  20. 20.
    V. A. Poluboyarov, O. V. Andrushkova, V. V. Boldyrev, O. B. Vinokurova, and L. A. Pauly,Study of the Sequence of Processes Occuring during the Mechanical Treatment of Oxides.Google Scholar
  21. 21.
    L. S. Zarkhin, O. V. Chikunov, and D. A. Salimonenko,The Temperature Measurement of the Uvenil Fracture Surface of Glassy Polymers.Google Scholar
  22. 22.
    B. Fubini, V. Bolis, E. Giamello, and M. Volante,Enhanced Surface Reactivity on Mechanically Activated Covalent Solids.Google Scholar
  23. 23.
    V. A. Radtsig and A. A. Bobyshev,Structure and Reactivity of Mechanically Activated Surface of Silica.Google Scholar
  24. 24.
    M. J. Dianez, J. Carrion, and J. M. Criado,Influence of Grinding on the Reactivity of Nickel Powder.Google Scholar
  25. 25.
    E. Mendelovici,Mechanochemical Changes in the Structure of Mn O by Mixer-Mill Grinding.Google Scholar
  26. 26.
    Yu. Y. Pavlukhin, B. B. Bokhonov, A. N. Rykov, and S. M. Paramzin,Crystal Growth during the Mechanical Activation of Zinc Ferrite.Google Scholar
  27. 27.
    M. L. Shepotko, A. A. Davydov, V. A. Poluboyarov, and O. V. Buevskaya,The Effect of Mechanical Activation of MgO on its Catalytic Properties in the Oxidative Dimerization of Methane.Google Scholar
  28. 28.
    T. S. Yusupov, G. N. Anoshin, E. A. Kirillova, and L. I. Razvorotoneva,On the Factors Determining the Increase of Mineral Solubility during Mechanical Activation.Google Scholar
  29. 29.
    W. L. Gao, M. X. Quan, and J. T. Wang,Investigation of the Amorphization and Crystallization Behaviors of Al x (Ni70 Zr30)100−x by Mechanical MillingGoogle Scholar
  30. 30.
    A. A. Davydov and M. L. Shepotko,IR-Spectroscopic Study of Changes in the Properties of the Surface of Metal Oxides during Mechanical Activation.Google Scholar
  31. 31.
    B. P. Zolotovskii, I. Yu. Simonov, and R. A. Buyanov,Mechanochemical Activation of Malachite.Google Scholar
  32. 32.
    Li Ximing, Chen Jiayong, R. Kammel, and F. Pawlek,Effect of Mechanical Activation by Fine Grinding on the Leaching Behaviour of Zinc Ferrite.Google Scholar
  33. 33.
    V. E. Orel, S. B. Alexeyev, F. V. Filchakov, A. M. Dubinskaya, and Y. A. Grinevich,The Mechanochemistry of Immunological Responses.Google Scholar
  34. 34.
    L. M. Polukhina,Relations Between the Kinetic Parameters of Mechanodestruction and the Characteristics of Polymer Rupture.Google Scholar
  35. 35.
    O. K. Gasymov, Sh. V. Mamedov, and K. M. L'vov,Free-Radical Processes in Proteins Caused by Mechanical Destruction.Google Scholar
  36. 36.
    V. Brozek, Z. Prasil, V. Pokorny, and J. Sisrova,The Effect of Gamma Radiation on the Ultrafine Grinding of Inorganic Materials.Google Scholar
  37. 37.
    V. Sepelak, K. Tkacova, and A. Buchal,Thermal Relaxation of Mechanically Induced Defects in Ferrites.Google Scholar
  38. 38.
    F. Wolf, G. Le Caer, G. Braichotte, and S. Begin-Colin,Characterization of Zirconia-Based Powders Synthesized by Ball Milling.Google Scholar
  39. 39.
    E. Ivanov, K. Surmiyama, H. Yamauchi, and K. Suzuki,Mechanically Induced Valence Fluctuation and New Phase Formation in the Immiscible Yb-Ce System.Google Scholar
  40. 40.
    L. Aymard and M. Figlarz,Influence of the Shape and Size of Metallic Silver and Palladium Powders on the Ag-Pd Alloy Morphologies Obtained by Mechanical Alloying.Google Scholar
  41. 41.
    J. Liao and M. Senna,Fast Mechanochemical Synthesis of Oxide Complexes from Systems Containing Hydroxides.Google Scholar
  42. 42.
    V. A. Yartys', A. I. Shtogryn, I. I. Bulyk, and V. V. Panasyuk,Mechanochemical Activation of the Interaction of Rare Earth Metals Alloys with Hydrogen as an Effective Method for the Production of Fine Powders of Ferromagnetic Alloys for High-Energy Permanent Magnets.Google Scholar
  43. 43.
    O. Abe,Synthesis of NiAl Fine Powder from Mechanochemically Activated Precursors.Google Scholar
  44. 44.
    K. Tokumitsu,Mechanochemical Reactions Between Metals and Liquid Hydrocarbons Formations of Nb-, V-, and Ta Hydrides.Google Scholar
  45. 45.
    M. Daturi, M. Ferretti, and L. Schiffini,Mechanically Induced Phase Transformations in Y-Ba-Cu-O Powders.Google Scholar
  46. 46.
    S. Laurelle, A. Bonnot, and M. Figlarz,Comparative Mechanochemical Behaviour of WO3 Oxides with ReO 3, Hexagonal, and Pyrochlore-Type Structures.Google Scholar
  47. 47.
    T. D. Shen, K. Y. Wang, M. X. Quan, and J. T. Wang,Synthesis of an Amorphous Ge-S Semiconductor by Mechanical Alloying.Google Scholar
  48. 48.
    J. Foct, R. S. de Figueiredo, O. Richard, and J. P. Morniroli,Phase Transformations in Fe-N Solid Solutions Induced by Grinding.Google Scholar
  49. 49.
    V. P. Chuev,The Application of Mechanochemistry to Solid-Phase Organic Synthesis.Google Scholar
  50. 50.
    A. P. Borisov, L. A. Petrova, and V. D. Makhaev,Mechanochemical Synthesis of Organometallic Compounds.Google Scholar
  51. 51.
    E. P. Yelsukov, V. A. Barinov, and L. V. Ovetchkin,Synthesis of Iron Carbides by Mechanical Alloying of Iron Powder with a Liquid Hydrocarbon (toluene).Google Scholar
  52. 52.
    M. Awano, K. Kani, Y. Takao, Y. Kuwahara, and H. Takagi,Mechanochemical Effects on Synthesis and Sintering of an Oxide Superconductor.Google Scholar
  53. 53.
    H. Ryu, E. Kasai, K. Sugiyama, and F. Saito,Effect of Dry Co-Grinding a Mixed Powder by a Planetary Ball Mill on the Formation of YBa 2Cu3Ox Superconducting Ceramics.Google Scholar
  54. 54.
    P. Bar-On, I. J. Lin, S. Nadiv, and M. Melamud,Formation of Partially Inverse Mg-Al Spinel by Grinding MgO with γ-Al 2O3.Google Scholar
  55. 55.
    K. N. Aripov, S. S. Khalikov, and Sh. Sh. Sagdullaev,The Use of Mechanochemistry in the Synthesis of Immobilized Medicinal Preparations. Google Scholar
  56. 56.
    O. Drbohlav, P. Crespo, R. Yavari, and A. Hernando,The Study of the Decomposition of CuFe Solid Solutions.Google Scholar
  57. 57.
    V. A. Barinov, V. A. Tsurin, L. V. Ovetchkin, G. A. Dorofeev, E. P. Elsukov, and A. E. Ermakov,Mechanical Alloying of Iron and Boron Powders.Google Scholar
  58. 58.
    T. Grigorieva and V. V. Boldyrev,The Synthesis of a Supersaturated Solid Solution by Mechanical Alloying.Google Scholar
  59. 59.
    I. Mitov, V. Mitrov, and A. Andreev,Mossbauer Investigation of α-FeOOH Dehydration by Mechanochemical Activation.Google Scholar
  60. 60.
    N. F. Uvarov, E. F. Hairetdinov, N. B. Bratei, and V. V. Boldyrev,Synthesis of Alumina-Based Nanocomposite Ionic Conductors Using Mechanical Activation.Google Scholar
  61. 61.
    L. A. Pauly, E. G. Avvakumov, L. A. Isupova, V. A. Poluboyarov, and V. A. Sadykov,Influence of Mechanical Activation on the Synthesis and Catalytic Activity of Lanthanum Cobaltite.Google Scholar
  62. 62.
    A. V. Dushkin, V. V. Boldyrev, and A. G. Druganov,On the Possibility of Solid State Mechanochemical Low Molecular Organic Synthesis.Google Scholar
  63. 63.
    E. A. Konovalova and G. R. Karagedov,Mechanochemical Activation of Metal Oxide Mixtures with a Close Packed Lattice Array.Google Scholar
  64. 64.
    Z. A. Juhasz and B. Kollath,Mechanochemical Reactions of the Pyrophyllite-MgO System.Google Scholar
  65. 65.
    M. N. Orfanova and V. N. Mitskan,Mechanoactivation of Natural Gas.Google Scholar
  66. 66.
    N. Zotov and D. Parlapanski,X-Ray Diffraction Study of Mechanical Alloying in the Ti-Si System.Google Scholar
  67. 67.
    P. Tsokov, V. Blaskov, D. Klissurski, and I. Tsolovski,Effect of Mechanical Activation on the Synthesis of α-Fe 2O3-Cr2O3 Solid Solutions.Google Scholar
  68. 68.
    D. Radev, D. Kllissurski,Mechanochemical Synthesis of Titanium Diboride.Google Scholar
  69. 69.
    V. Blaskov, L. Marlov, and D. Klissurski,Effects of the Precursor Types and their Mechanical Activation on the Synthesis Temperature of BaFe 12O19].Google Scholar
  70. 70.
    A. B. Solovieva, I. V. Kolbanev, A. N. Streletsky, O. V. Savina, and I. V. Berestetskaya,Mechanochemical Interaction of Ammonium Sulfate with Oxides.Google Scholar
  71. 71.
    V. Figusch and E. Burianova,Synthesis of Spinel MgAl 2O4 Ceramics from a Finely Milled Mixture of Magnesite MgCO3 and Gibbsite Al(OH)3.Google Scholar
  72. 72.
    E. G. Awakumov, N. V. Kosova, and E. T. Devyatkina,Mechanochemical Reactions of Hydrate Oxides.Google Scholar
  73. 73.
    M. V. Chaikina and E. G. Awakumov,Mixing and Interaction of Components during Mechanochemical Synthesis of Phosphates.Google Scholar
  74. 74.
    O. I. Lomovsky,Applied Mechanochemistry: Analysis of Computer Bank Data.Google Scholar
  75. 75.
    V. V. Boldyrev, L. P. Burleva, and T. P. Shakhtshneider,Mechanochemical Preparations of a Solid-State Dispersion of Sulfathiazole in Polyvinylpyrrolidone.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • P. Yu. Butyagin
  • A. M. Dubnskaya

There are no affiliations available

Personalised recommendations