Advertisement

Chromosoma

, Volume 58, Issue 2, pp 169–190 | Cite as

Analysis of chromatin-associated fiber arrays

  • Charles D. Laird
  • Linda E. Wilkinson
  • Victoria E. Foe
  • W. Yean Chooi
Article

Abstract

Electron microscopic examination of chromatin from embryonic nuclei ofOncopeltus fasciatus andDrosophila melanogaster reveals arrays of chromatin associated fibers. The lengths and spacings of these fibers were analyzed to provide a basis for defining and interpreting regions of transcriptionally active chromatin. The results of the analysis are consistent with the interpretation of some fibers as nascent RNA with associated protein (RNP). The chromatin segments underlying these fiber arrays were classified as ribosomal or non-ribosomal transcription units according to definitions and criteria described by Foe et al. (1976). — Nascent fibers on active ribosomal transcription units were analyzed and compared forDrosophila melanogaster, Triturus viridescens, andOncopeltus fasciatus. A common feature of the fiber patterns on ribosomal TUs is that origin-distal fibers exhibit greater length variability and a lower slope relative to proximal fibers. The region of increased variability in fiber lengths is correlated with the expected location of 28S ribosomal RNA sequences in the distal half of each ribosomal transcription unit. Because 28S ribosomal RNA appears to contain more extensive regions of base sequence complementarity, we suggest that the length of ribosomal RNP fibers is influenced under our spreading conditions by the secondary structure of the nascent RNA. — In order to calculate the RNA content of RNP fibers, chromatin morphology was used to estimate lengths of transcribed DNA. The packing ratio of DNA in chromatin, which we express as the length of B-structure DNA ÷ length of chromatin, is 1.1.–1.2. and 1.6 for the DNA in active ribosomal and non-ribosomal chromatins, respectively. These DNA packing ratios are used to determine the extent to which nascent RNP fibers are shorter than the transcribed DNA (expressed as DNA/RNP length ratio). For non-ribosomal transcription units and for proximal fibers of ribosomal transcription units, DNA/RNP length ratios are relatively constant within each array. However, considerable variability in this ratio (4–23) is observed for different arrays of fibers. Possible sources of this variability are considered by comparing ratios derived from the presumably identical ribosomal transcription units. — Further analysis of the morphology of nascent fibers may elucidate the contributions of proteins and successive RNA sequences to RNP structure.

Keywords

Transcription Unit Fiber Array Nascent Fiber Fiber Pattern Chromatin Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axel, R., Cedar, H., Felsenfeld, G.: The structure of the globin genes in chromatin. Biochemistry (Wash.)14, 2489–2495 (1975)Google Scholar
  2. Baldwin, J.P., Boseley, P.G., Bradbury, E.M., Ibel, K.: The subunit structure of the eukaryotic chromatin. Nature (Lond.)253, 245–249 (1975)Google Scholar
  3. Bloom, F.E., Aghajanian, G.K.: Cytochemistry of synapses: Selective staining for electron microscopy. Science154, 1575–1577 (1966)Google Scholar
  4. Chooi, W.Y., Laird, C.D.: DNA and polyribosome-like material in lysates of mitochondria of Drosophila melanogaster. J. molec. Biol.100, 493–518 (1976)Google Scholar
  5. Davis, R.W., Davidson, N.: Electron-microscopic visualization of deletion mutations. Proc. nat. Acad. Sci. (Wash.)60, 243–250 (1968)Google Scholar
  6. Davis, R.W., Hyman, R.W.: Physical locations of the in vitro RNA initiation site and termination sites of T7 M DNA. Cold Spr. Harb. Symp. quant. Biol.35, 269–281 (1970)Google Scholar
  7. Finch, J.T., Noll, M., Kornberg, R.: Electron microscopy of defined lengths of chromatin. Proc. nat. Acad. Sci. (Wash.)72, 3320–3322 (1975)Google Scholar
  8. Flanagan, J.R.: Maximum likelihood procedures for evaluating data of chromatin-associated fiber arrays. (Appendix to Laird et al., 1976). Chromosoma (Berl.)58, 191–192 (1976)Google Scholar
  9. Foe, V.E.: Activation of transcriptional units during the embryogenesis of Oncopeltus fasciatus. Ph.D. dissertation, University of Texas, Austin (1975)Google Scholar
  10. Foe, V.E., Wilkinson, L.E., Laird, C.D.: Comparative organization of active transcription units in Oncopeltus fasciatus. Cell9, 131–146 (1976)Google Scholar
  11. Gall, J.G.: Nuclear RNA of the salamander oocyte. Nat. Cancer Inst. Monogr.23, 475–488 (1966)Google Scholar
  12. Georgiev, G.P., Samarina, O.P.: D-RNA containing ribonucleoprotein particles. Advanc. Cell Biol.2, 47–110 (1971)Google Scholar
  13. Glover, D.M., White, R.L., Finnegan, D.J., Hogness, D.S.: Characterization of six cloned DNAs from Drosophila melanogaster, including one that contains the genes for rRNA. Cell5, 149–158 (1975)Google Scholar
  14. Gottesfeld, J.M., Murphy, R.F., Bonner, J.: Structure of transcriptionally active chromatin. Proc. nat. Acad. Sci. (Wash.)72, 4404–4408 (1975)Google Scholar
  15. Griffith, J.D.: Chromatin structure: deduced from a minichromosome. Science187, 1202–1203 (1975)Google Scholar
  16. Hackett, P.B., Sauerbier, W.: The transcriptional organization of the ribosomal RNA genes in mouse L cells. J. molec. Biol.91, 235–256 (1975)Google Scholar
  17. Hamkalo, B.A., Miller, O.L., Jr.: Electron microscopy of genetic activity. Ann. Rev. Biochem.42, 379–396 (1973)Google Scholar
  18. Hewish, D.R., Burgoyne, L.A.: Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. biophys. Res. Commun.52, 504–510 (1973)Google Scholar
  19. Holde, K.E. van, Sahasrabuddhe, C.G., Shaw, B.R.: Electron microscopy of chromatin subunit particles. Biochem. biophys. Res. Commun.60, 1365 (1974)Google Scholar
  20. Karpel, R.L., Swistel, D.G., Miller, N.S., Geroch, M.E., Lu, C., Fresco, J.R.: Acceleration of RNA renaturation by nucleic acid unwinding proteins. In: Processing of RNA. Brookhaven Symp. Biol.26, 165–174 (1975)Google Scholar
  21. Keyl, H.G.: Lampbrush chromosomes in spermatocytes of Chironomus. Chromosoma (Berl.)51, 75–92 (1975)Google Scholar
  22. Kornberg, R.: Chromatin structure: A repeating unit of histones and DNA. Science184, 868–871 (1974)Google Scholar
  23. Kornberg, R.D., Thomas, J.O.: Chromatin structure: Oligomers of the histones. Science184, 865–868 (1974)Google Scholar
  24. Lagowski, J., Yu, M.-Y.W., Forrest, H.S., Laird, C.D.: Dispersity of repeat DNA sequences in Oncopeltus fasciatus, an organism with diffuse centromeres. Chromosoma (Berl.)43, 349–373 (1973)Google Scholar
  25. Laird, C.D.: Chromatid structure: relationship between DNA content and nucleotide sequence diversity. Chromosoma (Berl.)32, 378–406 (1971)Google Scholar
  26. Laird, C.D., Chooi, W.Y.: Morphology of transcription units in Drosophila melanogaster. Chromosoma (Berl.)58, 193–218 (1976)Google Scholar
  27. Langmore, J.P., Wooley, J.C.: Chromatin architecture: Investigation of a subunit of chromatin by dark field electron microscopy. Proc. nat. Acad. Sci. (Wash.)72, 2691–2695 (1975)Google Scholar
  28. Lian, M., Hurlebert, R.B.: The topological order of 18S and 28S ribosomal nucleic acids within the 45S precursor molecule. J. molec. Biol.98, 321–332 (1975)Google Scholar
  29. Lindsley, D.L., Grell, E.H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ.527 (1968)Google Scholar
  30. Loening, U.E., Jones, K.W., Birnstiel, M.L.: Properties of the ribosomal RNA precursor in Xenopus laevis; comparison to the precursor in mammals and plants. J. molec. Biol.45, 353–366 (1969)Google Scholar
  31. McKnight, S.L., Miller, O.L., Jr.: Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell8, 305–319 (1976)Google Scholar
  32. Martin, T., Billings, P., Levey, A., Ozarslzn, S., Quinlan, T., Swift, H., Uurbas, L.: Some properties of RNA: protein complexes from the nucleus of eukaryotic cells. Cold Spr. Harb. Symp. quant. Biol.38, 921–931 (1974)Google Scholar
  33. Miller, O.L., Jr.: Visualization of genes in action. Sci. Amer.228, 34–12 (1973)Google Scholar
  34. Miller, O.L., Jr., Bakken, A.H.: Morphological studies of transcription. Acta endocr. (Kbh.), Suppl.,168, 155–157 (1972)Google Scholar
  35. Miller, O.L., Jr., Beatty, B.R.: Visualization of nucleolar genes. Science164, 955 (1969)Google Scholar
  36. Olins, A.L., Olins, D.E.: Spheroid chromatin unit (nu bodies). Science183, 330–332 (1974)Google Scholar
  37. Oudet, P.M., Gross-Bellard, M., Chambon, P.: Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell4, 281–300 (1975)Google Scholar
  38. Perry, R.P., Cheng, T.Y., Freed, J.J., Greenberg, J.R., Kelley, D.E., Tartof, K.D.: Evolution of the transcriptional unit of ribosomal RNA. Proc. nat. Acad. Sci. (Wash.)65, 609–614 (1970)Google Scholar
  39. Scherrer, K., Latham, H., Darnell, J.E.: Demonstration of an unstable RNA and or a precursor to ribosomal RNA in HeLa cells. Proc. nat. Acad. Sci. (Wash.)49, 240–248 (1963)Google Scholar
  40. Shaw, B.R., Herman, T.W., Kovacic, R.T., Beaudreau, G.S., Holde, K.E. van: Analysis of subunit organization in chicken erythrocyte chromatin. Proc. nat. Acad. Sci. (Wash.)73, 505–509 (1976)Google Scholar
  41. Watson, J.D., Crick, F.H.C.: The structure of DNA. Cold Spr. Harb. Symp. quant. Biol.18, 123–131 (1953)Google Scholar
  42. Weintraub, H., Groudine, M.: Transcriptionally active and inactive conformations of chromosomal subunits. Science (in press, 1976)Google Scholar
  43. Wellauer, P.K., Dawid, I.B.: Secondary structure maps of ribosomal RNA and DNA. I. Processing of Xenopus laevis ribosomal RNA and structure of single-stranded ribosomal DNA. J molec. Biol.89, 379–395 (1974)Google Scholar
  44. Wellauer, P.K., Dawid, I.B., Kelley, I.B., Perry, R.P.: Secondary structure maps of ribosomal RNA. II. Processing of mouse L-cell ribosomal RNA and variations in the processing pathway. J. molec. Biol.89, 397–407 (1974)Google Scholar
  45. Woodcock, C.L.F.: Ultrastructure of inactive chromatin. J. Cell Biol.59, 368a (1973)Google Scholar
  46. Woodcock, C.L.F., Safer, J.P., Stanchfield, J.E.: Structural repeating units in chromatin. Evidence for their general occurrence. Exp. Cell Res.97, 107–110 (1976)Google Scholar

References

  1. Hogg, R.V., Craig, A.T.: Introduction to Mathematical Statistics. New York: Macmillan 1976Google Scholar
  2. Laird, C.D., Wilkinson, L.E., Foe, V.E., Chooi, W.Y.: Analyses of chromatin-associated fiber arrays. Chromosoma (Berl.)58, 169–190 (1976)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Charles D. Laird
    • 1
  • Linda E. Wilkinson
    • 1
  • Victoria E. Foe
    • 1
  • W. Yean Chooi
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations