Molecular and General Genetics MGG

, Volume 146, Issue 3, pp 275–283 | Cite as

Stability of “spacer” sequences of pre-ribosomal RNA inEscherichia coli

  • Yasunobu Kano
  • Lorenzo Silengo
  • Fumio Imamoto


“Spacer” sequences of an rRNA gene transcript were detected with high efficiency by hybridization with DNA of the specialized transducing phage ϕ80rrn. Hybridization-competition studies revealed that 20 to 23% of the 30S precursor rRNA, obtained formE. coli mutant strainAB301/105, consist of “spacer” sequences. The “spacer” sequences formed hybrids withE. coli DNA, but not withVibrio DNA. Experiments with RNA labeling in the presence of rifampicin showed that more than 80% of the spacer sequences arrive in full-length 30S pre-rRNA chains before any cleavage of the RNA occurs. The hybridization assays also permitted the detection of “spacer” sequences in pulse-labeled rRNA of wildtype cells, in which the 30S pre-rRNA is already cleaved during its synthesis. Many of these “spacer” sequences degraded to alcohol-soluble materials with a half-life time of 1.2 min. The half-life was not lengthened by the treatment of cells with chloramphenicol, which stabilizes bulk mRNA. However, unstable “spacer” sequences transcribed in cells deficient in RNase III exhibited slower degradation, with a half-life time of about 9 min, whereas the cleavage of 30S pre-rRNA to smaller RNA species occurred with a half-life of about 3 min. These results are consistent with the notion that a rate-limiting action of RNase III in the initial attack leads to degradation of “spacer” sequences in rRNA gene transcript; and that degradation is not at all connected with ribosome translocation.


Rifampicin Initial Attack Hybridization Assay inEscherichia Coli Wildtype Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attardi, G., Huang, P.C., Kabat, S.: Recognition of ribosomal RNA sites in DNA, I. Analysis of theE. coli system. Proc. nat. Acad. Sci. (Wash.)53, 1490–1498 (1965)Google Scholar
  2. Bremer, H., Berry, L.: Co-transcription of 16S and 23S ribosomal RNA inEscherichia coli. Nature (Lond.) New Biol.234, 81–83 (1971)Google Scholar
  3. Brown, D.D., Sugimoto, K.: The structure and evolution of ribosomal and 5S DNA inXenopus laevis andXenopus mulleri. Cold Spr. Harb. Symp. quant. Biol.37, 501–505 (1973)Google Scholar
  4. Craig, E.: Messenger RNA metabolism when translocation is blocked. Genetics70, 331–334 (1972)Google Scholar
  5. Deonier, R.C., Ohtsubo, E., Lee, H.J., Davidson, N.: Electron microscope heteroduplex studies of sequence relations among plasmids ofEscherichia coli. VII. Mapping the ribosomal RNA genes of plasmid F14. J. molec. Biol.89, 619–629 (1974)Google Scholar
  6. Dunn, J.J., Studier, F.W.: T7 early RNAs andEscherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease III. Proc. nat. Acad. Sci. (Wash.)70, 3296–3300 (1973)Google Scholar
  7. Feunteun, J., Rosset, R., Ehresmann, C., Stiegler, P., Fellner, P.: Abnormal maturation of precursor 16S RNA in a ribosomal assembly defective mutant ofE. coli. Nucleic acid Res.1, 141–145 (1974)Google Scholar
  8. Gesteland, R.F.: Isolation and characterization of ribonuclease I mutants ofEscherichia coli. J. molec. Biol.16, 67–84 (1966a)Google Scholar
  9. Gesteland, R.F.: Unfolding ofEscherichia coli robosomes by removal of magnesium. J. molec. Biol.18, 356–371 (1966b)Google Scholar
  10. Ginsburg, D., Steitz, A.: The 30S ribosomal precursor RNA fromEscherichia coli. J. biol. Chem.250, 5647–5654 (1975)Google Scholar
  11. Hayes, F., Vasseur, M., Nikolaev, N., Schlessinger, D., Sriwidada, J., Krol, A., Branlant, C.: Structure of a 30S pre-ribosomal RNA ofE. coli. FEBS Letters56, 85–91 (1975)Google Scholar
  12. Imamoto, F.: Intragenic initiations of transcription of the tryptophan operon inEscherichia coli following dinitrophenol treatment without tryptophan. J. molec. Biol.43, 51–69 (1969)Google Scholar
  13. Imamoto, F.: Diversity of regulation of genetic transcription. I. Effect of antibiotics which inhibit the process of translation on RNA metabolism inEscherichia coli. J. molec. Biol.74, 113–136 (1973)Google Scholar
  14. Imamoto, F., Schlessinger, D.: Bearing of some recent results on the mechanisms of polarity and messenger RNA stability. Molec. gen. Genet.135, 29–38 (1974)Google Scholar
  15. Kaiser, A.D., Hogness, D.S.: The transformation ofEscherichia coli with deoxyribonucleic acid isolated from bacteriophage λdg. J. molec. Biol.2, 392–415 (1960)Google Scholar
  16. Kindler, P., Keil, T.U., Hofschneider, P.H.: Isolation and characterization of a ribonuclease III deficient mutant ofEscherichia coli. Molec. gen. Genet.126, 53–69 (1973)Google Scholar
  17. Kossman, C.R., Stamato, T.D., Pettijohn, D.E.: Tandem synthesis of the 16S and 23S ribosomal RNA sequences ofEscherichia coli. Nature (Lond.) New Biol.234, 102–104 (1971)Google Scholar
  18. Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophagePl. Virology1, 190–206 (1955)Google Scholar
  19. Lowry, C.V., Dahlberg, J.E.: Structural differences between the 16S ribosomal RNA ofEscherichia coli and its precursor. Nature (Lond.) New Biol.232, 52–54 (1971)Google Scholar
  20. Meyhack, B., Meyhack, I., Apirion, D.: Processing of precursor particles containing 17S rRNA in a cell free system. FEBS Letters49, 215–219 (1974)Google Scholar
  21. Nikolaev, N., Birenbaum, M., Schlessinger, D.: 30S pre-ribosomal RNA ofEscherichia coli: Primary and secondary progressing. Biochim. biophys. Acta (Amst.)395, 478–489 (1975a)Google Scholar
  22. Nikolaev, N., Glazier, D., Schlessinger, D.: Cleavage by ribonuclease III of the complex of 30S pre-ribosomal RNA and ribosomal proteins ofEscherichia coli. J. molec. Biol.94, 301–304 (1975b)Google Scholar
  23. Nikolaev, N., Schlessinger, D., Wellauer, P.K.: 30S pre-ribosomal RNA ofEscherichia coli and products of cleavage by ribonuclease III. Length and molecular weight. J. molec. Biol.86, 741–747 (1974)Google Scholar
  24. Nikolaev, N., Silengo, L., Schlessinger, D.: A role for ribonuclease III in processing of ribosomal ribonucleic acid and messenger ribonucleic acid precursors inEscherichia coli. J. biol. Chem.248, 7967–7969 (1973a)Google Scholar
  25. Nikolaev, N., Silengo, L., Schlessinger, D.: Synthesis of a large precursor to ribosomal RNA in a mutant ofEscherichia coli. Proc. nat. Acad. Sci. (Wash.)70, 3361–3365 (1973b)Google Scholar
  26. Ohtsubo, E., Soll, L., Deonier, R.C., Lee, H.J., Davidson, N.: Electron microscope heteroduplex studies of sequence relations among plasmids ofEscherichia coli. VIII. The structure of bacteriophage ϕ80d3ilv + su7+, including the mapping of the ribosomal RNA genes. J. molec. Biol.89, 631–646 (1974)Google Scholar
  27. Pedersen, S., Kjeldgaard, N.O.: A hybridization assay specific for ribosomal RNA fromEscherichia coli. Molec. gen. Genet.118, 85–91 (1972)Google Scholar
  28. Saito, H., Miura, K.: Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. biophys. Acta (Amst.)72, 619–629 (1963)Google Scholar
  29. Schlessinger, D., Ono, M., Nikolaev, N., Silengo, L.: Accumulation of 30S preribosomal ribonucleic acid in anEscherichia coli mutant treated with chloramphenicol. Biochemistry (Wash.)13, 4268–4271 (1974)Google Scholar
  30. Silengo, L., Nikolaev, N., Schlessinger, D., Imamoto, F.: Stabilization of mRNA with polar effects in anEscherichia coli mutants. Molec. gen. Genet.134, 7–19 (1974)Google Scholar
  31. Soll, L.: Mutational alteration of tryptophan-specific transfer RNA that generate translation suppressors of the UAA, UAG and UGA nonsense codons. J. molec. Biol.86, 233–243 (1974)Google Scholar
  32. Vermus, H.E., Perlman, R.L., Pastan, I.: Regulation oflac transcription in antibiotic-treatedE. coli. Nature (Lond.) New Biol.230, 41–44 (1971)Google Scholar
  33. Vogel, H.J., Bonner, D.M.: Acetylornithinase ofEscherichia coli: Partial purification and some properties. J. biol. Chem.218, 97–106 (1956)Google Scholar
  34. Wu, M., Davidson, N.: Use of gene 32 protein staining of singlestrand polynucleotides for gene mapping by electron microscopy: Application to the ϕ80d3ilvsu +7 system. Proc. nat. Acad. Sci. (Wash.)72, 4506–4510 (1975)Google Scholar
  35. Yaniv, M., William, R.F., Berg, P., Soll, L.: A single mutational modification of a tryptophan-specific transfer RNA permits amino-acylation by glutamine and translation of the codon UAG. J. molec. Biol.86, 245–260 (1974)Google Scholar
  36. Yamada, Y., Whitaker, P.A., Nakada, D.: Functional instability of T7 early mRNA. Nature (Lond.)248, 335–338 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Yasunobu Kano
    • 1
  • Lorenzo Silengo
    • 1
  • Fumio Imamoto
    • 1
  1. 1.Department of Microbial Genetics, Research Institute for Microbial DiseasesOsaka UniversitySuita OsakaJapan

Personalised recommendations