Advertisement

Rheologica Acta

, Volume 31, Issue 5, pp 471–480 | Cite as

An automated dynamic viscometer with air bearing and inductive transducers for angular displacement detection

  • H. J. E. Smits
  • D. van den Ende
  • G. J. Beukema
  • E. G. Altena
  • P. H. J. Spitteler
Original Contributions

Abstract

A dynamic viscometer is described, with which the dynamic moduli in the frequency range from 2 × 10−3 to 10 Hz can be determined for liquids with 10−3 Pa< |G* | <102 Pa. Due to the application of an air bearing and inductive transducers for the detection of the angular displacement of both the drive and the measuring cylinder a sensitive apparatus has been made. Very small strains (γ0 ≅ 10−3) can be applied and only a small amount of sample (4 ml) is needed. The operation of the apparatus is fully computer-controlled, thus, long runs at various frequencies and temperatures are possible without operator intervention. The theoretical background, calibration procedure, and operation window are described. A presentation of some measurements on two polyisoprene/polystyrene triblock copolymer solutions concludes the work.

Key words

Complexviscosity dynamicviscometer rheometer triblockcopolymer transducer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blom C, Mellema J (1984) Torsion pendula with electromagnetic drive and detection system for measuring the complex shear modulus of liquids in the frequency range 80–2500 Hz. Rheol Acta 23:98–105Google Scholar
  2. Darby R (1976) Viscoelastic fluids. Marcel Dekker Inc, New YorkGoogle Scholar
  3. Dekking P (1961) Determination of dynamic mechanical properties of high polymers at low frequencies. PhD Thesis, LeidenGoogle Scholar
  4. Den Otter JL (1969) Dynamic measurements on polymer solutions and melts. Rheol Acta 8:355–363Google Scholar
  5. Duiser JA (1965) Het visco-elastisch gedrag van twee polycarbonzuren in water. PhD Thesis, Leiden (in Dutch)Google Scholar
  6. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley and Sons, New YorkGoogle Scholar
  7. Holster PL (1967) Gaslagers met uitwendige drukbron. PT Werktuigbouw 22:363–370 (in Dutch)Google Scholar
  8. Lodge AS (1956) Network theory of flow birefringence and stress in concentrated polymer solutions. Trans Faraday Soc 52:120–130Google Scholar
  9. Markovitz H (1952) A property of Bessel functions and its application to the theory of two rheometers. J Appl Phys 23:1070–1077Google Scholar
  10. Morrison TE, Zapas LJ, de Witt TW (1955) Apparatus for low-frequency dynamic measurement on polymeric systems. Rev Sci Instr 26:357–360Google Scholar
  11. Oka S (1960) Principles of rheometry. In: Eirich FR (ed) Rheology vol. 3, Academic Press, New York, pp 17–82Google Scholar
  12. Oosterbroek M, Waterman HA, Wiseall SS, Altena EG, Mellema J, Kipp GAM (1980) Automatic apparatus based upon a nickel-tube resonator, for measuring the complex shear modulus of liquids in the kHz range. Rheol Acta 19:497–506Google Scholar
  13. Te Nijenhuis K, van Donselaar R (1985) A newly designed coaxial cylinder-type dynamic rheometer. Rheol Acta 24:47–57Google Scholar
  14. Waterman HA, Oosterbroek M, Beukema GJ, Altena EG (1979) On the use of a nickel-tube resonator for measuring the complex shear modulus of liquids in the kHz-range. Rheol Acta 18:585–592Google Scholar

Copyright information

© Steinkopff-Verlag 1992

Authors and Affiliations

  • H. J. E. Smits
    • 1
  • D. van den Ende
    • 1
  • G. J. Beukema
    • 1
  • E. G. Altena
    • 1
  • P. H. J. Spitteler
    • 1
  1. 1.Rheology Group Faculty of Applied PhysicsUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations