Skip to main content
Log in

Thermal decomposition of poly(tetramethyloxydisilaethylene)

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

Thermal decomposition of poly[oxybis(dimethylsilylene)] having chains terminated with trimethylsiloxy groups was studied by thermogravimetry, pyrolysis-mass spectrometry, and infrared spectroscopy. The polymer is thermally less stable than poly(dimethylsiloxane). Depolymerization occurs at temperatures of 250–350°C, although this process also takes place at lower temperatures. The depolymerization produces cyclic oligomers of general formula [(Me2Si)2O] n , with predominant formation of the oligomern=2. The depolymerization is accompanied by processes which are referred to as restructurization because they change the structure of the polymer backbone. Decomposition may lead also to the formation of branching points. The shape of the thermograms taken under isothermal conditions is in agreement with an unzipping mechanism for depolymerization involving random initiation. Excluding the short initial period of the process, the unzipping is terminated at a restructurization point. A low activation energy points to initiation induced by electron transfer, presumably involving traces of contaminant. At higher temperatures, 350–600°C, loss of organic parts of the polymer takes place along with further restructurization. At higher temperatures the polymer was also found to undergo easily oxygenation of its backbone with atmospheric oxygen, which leads to the formation of siloxane groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Thomas and T. C. Kendrick,J. Polym. Sci. A2 7, 537 (1969).

    Google Scholar 

  2. N. Grassie and J. G. McFarlane,Eur. Polym. J. 14, 857 (1978).

    Google Scholar 

  3. M. Zeldin, Bo-Rong Qian, and Sung J. Choi,J. Polym. Sci. Polym. Chem. Ed. 21, 1361 (1983).

    Google Scholar 

  4. A. Ballistreri, D. Garozzo, and G. Montaudo,Macromolecules 17, 1312 (1984).

    Google Scholar 

  5. T. C. Kendrick, B. Parbhoo, and J. W. White, inChemistry of Organic Silicon Compounds, Part 2, S. Patai and Z. Rappaport, eds. (J. Wiley and Sons, Chichester, 1989), Vol. 2, p. 1319.

    Google Scholar 

  6. R. West, inChemistry of Organic Silicon Compounds, S. Patai and Z. Rappaport, eds. (J. Wiley and Sons, New York, 1989), Part 2, p. 1207.

    Google Scholar 

  7. S. Yajima,Ceram. Bull. 62, 893 (1983).

    Google Scholar 

  8. P. Trefonas, inEncyclopedia of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Manges, eds. (J. Wiley and Sons, New York, 1988), Vol. 13, p. 162.

    Google Scholar 

  9. J. Chojnowski, J. Kurjata, and S. Rubinsztajn,Makromol. Chem. Rapid Commun. 15, 469 (1988).

    Google Scholar 

  10. J. Chojnowski, J. Kurjata, S. Rubinsztajn, and M. Scibiorek, inFrontiers of Organosilicon Chemistry, A. R. Bassindale and P. P. Gaspar, eds. (Royal Society of Chemistry, Cambridge, 1991), p. 70.

    Google Scholar 

  11. M. R. Litzow and T. R. Spalding, (Elsevier, Amsterdam, 1973), p. 285.

  12. A. Ballistreri, D. Garozzo, and G. Montaudo,Macromolecules 17, 1312 (1984).

    Google Scholar 

  13. J. H. Flynn and L. A. Wall,J. Res. Natl. Bur. Stand. A Phys. Chem. 70A, 487 (1966).

    Google Scholar 

  14. W. Patnode and D. F. Wilcock,J. Am. Chem. Soc. 68, 358 (1946).

    Google Scholar 

  15. C. W. Lewis,J. Polym. Sci. 37, 425 (1959).

    Google Scholar 

  16. M. Kucera, J. Lanikova, and M. Jelinek,J. Polym. Sci. 53, 301 (1961).

    Google Scholar 

  17. J. M. Cox, B. A. Wright, and W. W. Wright,J. Appl. Polym. Sci. 8, 2951 (1964).

    Google Scholar 

  18. V. V. Rode, M. A. Verkhotin, and S. R. Rafikiv,Vysokomol. Soedin. A11, 1529 (1969).

    Google Scholar 

  19. K. A. Andrianov, V. S. Papkov, G. L. Slonimskii, A. A. Zhdanov, and S. Ye. Yakushkina,Vysokomol. Soedin. A11, 2030 (1969).

    Google Scholar 

  20. G. B. Tanny and L. E. St. Pierre,J. Polym. Sci. B9, 863 (1971).

    Google Scholar 

  21. M. Blazso, G. Garzo, and T. Szekely,Chromatographia 5, 489 (1972).

    Google Scholar 

  22. M. Zeldin, G. P. Rajendran, and M. S. Beder,Polym. Mater. Sci. Eng 49, 274 (1983).

    Google Scholar 

  23. D. W. Kang, G. P. Rajendran, and M. Zeldin,J. Polym. Sci. Polym. Chem. Ed. 24, 1085 (1986).

    Google Scholar 

  24. R. West, inComprehensive Organometallic Chemistry, G. Wilkinson, G. Stone, and E. W. Abel, eds. (Pergamon Press, Oxford, 1982), Vol. 2, p. 365.

    Google Scholar 

  25. R. D. Miller and J. Michl,Chem. Rev. 89, 1359 (1989).

    Google Scholar 

  26. J. M. Funt, D. Parekh, J. H. Magill, and Y. T. Shah,J. Polym. Sci. Polym. Chem. Ed. 13, 2181 (1975).

    Google Scholar 

  27. W. R. Schmidt, L. V. Interrante, R. H. Doremus, T. K. Trout, P. S. Marchetti, and G. E. Maciel,Chem. Mater. 3, 257 (1991).

    Google Scholar 

  28. T. R. Crompton,Chemical Analysis of Organometallic Compounds (Academic Press, London, 1974), Vol. 2, p. 91.

    Google Scholar 

  29. H. Marsmann, inNMR Basic Principles and Progress, P. Diehl, E. Fluck, and R. Kosfeld, eds. (Springer Verlag, Berlin, 1981), Vol. 17, p. 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnowski, J., Kurjata, J., Rubinsztajn, S. et al. Thermal decomposition of poly(tetramethyloxydisilaethylene). J Inorg Organomet Polym 2, 387–404 (1992). https://doi.org/10.1007/BF00701113

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00701113

Key words

Navigation