Effect of an increase in the nitrogen content of the working gas on the microstructure of reactive sputtered TiN thin films

  • S. O. Hyatt
  • B. S. Chao
  • H. Yamauchi


TiN films were deposited on (100)-Si substrates by RF-reactive sputtering. The effects of processing parameters and substrate orientation on the stoichiometry, resistivity and microstructure of reactively sputtered TiN thin films were investigated. The RF-power was fixed at 50 W, and the nitrogen content in the working gas was adjusted so that target nitridation occurred at a relatively low nitrogen content, 2.6% N2, in a fixed total flow rate of gases of 46.25 standard cubic centimetres (sccm). The N2 percentage was varied from 2.6% to 15.4%. The films were continuous and ∼200 nm thick. Films deposited with the substrate facing the target exhibited 111-texturing, while films on substrates lying in the same plane of the target surface had 100-texturing. Both X-rays photoelectron spectroscopy and high-resolution detailed scans of the Auger electron energy spectrum were used for the stoichiometry determination. On the 100-textured TiN films, the N/Ti ratio was ∼1.0 at low N2 flow rates; the N/Ti ratio rapidly increased with N2 flow rate, and then levelled off. The films had resistivities ranging from 85 to 1340 µΩ cm, and the functional dependence of both N/Ti and the resistivity values behaved similarly with increasing N2. X-ray single-line profile analysis of the 200-reflection indicated that the average crystallite size decreased and the average strain increased with increasing nitrogen content in the working gas. The Si/TiN structures were heat treated in the temperature range from 300 to 600°C in a quartz tube under 1 atm (∼105Pa) of flowing high purity Ar gas. Heat treatment at 300°C did not affect the TiN film integrity, while treatment at 400–600°C resulted in void-type defects.


Nitrogen Content Electron Energy Spectrum Increase Nitrogen Content Detailed Scan Film Integrity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. PERRY,Thin Solid Films 170 (1989) 63.Google Scholar
  2. 2.
    A. J. PERRY, M. JAGNER, W. D. SPROUL and P. J. RUDNIK, “The residual stress in TiN films deposited onto cemented carbide by high-rate reactive sputtering”, Paper presented in the International Conference on Metallurgical Coatings, American Vacuum Society — Vacuum Metallurgy Division, San Diego, CA, April, 1989.Google Scholar
  3. 3.
    D. S. RICKERBY and R. B. NEWBERY,Vacuum 38 (1988) 161.Google Scholar
  4. 4.
    A. J. PERRY and L. CHOLLET,J. Vac. Sci. Technol. A4 (1986) 2801.Google Scholar
  5. 5.
    V. VALVODA, R. KUZEL, Jr, R. CERNY and L. DOBIASOVA,Mater. Sci. Engng A104 (1988) 223.Google Scholar
  6. 6.
    V. VALVODA, R. CERNY, R. KUZEL, Jr, J. MUSIL and V. POULEK,Thin Solid Films 158 (1988) 225.Google Scholar
  7. 7.
    V. VALVODA, R. KUZEL, Jr, R. CERNY and J. MUSIL, ibid.156 (1988) 53.Google Scholar
  8. 8.
    H. FRELLER and H. P. LORENZ,J. Vac. Sci. Technol. A4 (1986) 2691.Google Scholar
  9. 9.
    A. KOHLHASE, M. MANDL and W. PALMER,J. Appl. Phys. 65 (1989) 2464.Google Scholar
  10. 10.
    J. I. LANGFORD,J. Appl. Crystallogr. 11 (1978) 10.Google Scholar
  11. 11.
    Th. H. DE KEIJSER, J. I. LANGFORD, E. J. MITTEMEIJER and A. B. P. VOGELS, ibid.15 (1982) 308.Google Scholar
  12. 12.
    A. J. PERRY, C. STRANDBERG, W. D. SPROUL, S. HOFMANN, C. ERNSBERGER, J. NICKERSON and L. CHOLLET, in “The chemical analysis of TiN films: a round robin experiment”,Thin Solid Films 153 (1987) 169.Google Scholar
  13. 13.
    L. E. DAVIS, N. C. MCDONALD, P. W. PALMBERG, G. E. RIACH and R. E. WEBER, in “Handbook of Auger electron spectroscopy’, 2nd edition (Physical Electronics Industries, Inc., MN, USA, 1976).Google Scholar
  14. 14.
    B. J. BURROW, A. E. MORGAN and R. C. ELLWANGER,J. Vac. Sci. Technol. A4 (1986) 2463.Google Scholar
  15. 15.
    C. D. WAGNER, W. M. RIGGS, L. E. DAVIS, J. F. MOULDER and G. E. MUILENBERG, in “Handbook of X-ray photoelectron spectroscopy”, (Physical Electronics Industries, Inc., MN, USA, 1978).Google Scholar
  16. 16.
    M. WITTMER, Private Communication.Google Scholar
  17. 17.
    N. CIRCELLI and J. HEMS,Solid State Technol. February (1988) 75.Google Scholar
  18. 18.
    W. SINKE, G. P. A. FRIJLINK and F. W. SARIS,Appl. Phys. Lett. 47 (1985) 471.Google Scholar
  19. 19.
    H. VON SEEFELD, N. W. CHEUNG, M. MAENPAA and M.-A. NICOLET,IEEE Trans. Electron. Dev. ED27 (1980) 873.Google Scholar
  20. 20.
    R. C. ELLWANGER and J. M. TOWNER,Thin Solid Films 161 (1988) 289.Google Scholar
  21. 21.
    J.-E. SUNDGREN, B.-O. JOHANSSON, S.-E. KARLSSON and H. T. G. HENTZELL, ibid.105 (1983) 367.Google Scholar
  22. 22.
    N. KUMAR, K. POURREZAEI, M. FISSEL, T. BEGLEY, B. LEE and E. C. DOUGLAS,J. Vac. Sci. Technol. A5 (1987) 1778.Google Scholar
  23. 23.
    G. LEMPERIERE and J. M. POITEVIN,Thin Solid Films 111 (1984) 339.Google Scholar
  24. 24.
    Y. IGASAKI and H. MITSUHASHI, ibid.70 (1980) 17.Google Scholar
  25. 25.
    S. KANAMORI, ibid.136 (1986) 195.Google Scholar
  26. 26.
    R. R. MANORY and G. KIMMEL, ibid.150 (1987) 277.Google Scholar
  27. 27.
    T. P. THORPE, S. B. QADRI, S. A. WOLF and J. H. CLAASSEN,Appl. Phys. Lett. 49 (1986) 1239.Google Scholar
  28. 28.
    U. HELMERSSON, J.-E. SUNDGREN and J. E. GREEN,J. Vac. Sci. Technol. A4 (1986) 500.Google Scholar
  29. 29.
    N. SAVVIDES and B. WINDOW,J. Appl. Phys. 64 (1988) 225.Google Scholar
  30. 30.
    W. POSADOWSKI and L. K.-STEPNIEWSKA,Thin Solid Films 62 (1979) 347.Google Scholar
  31. 31.
    A. ROUSSEAU and J. GUILLE,Vacuum 38 (1988) 443.Google Scholar
  32. 32.
    J. M. POITEVIN, G. LEMPERIERE and J. TARDY,Thin Solid Films 97 (1982) 69.Google Scholar
  33. 33.
    N. KUMAR, K. POURREZAEI, B. LEE and E. C. DOUGLAS, ibid.164 (1988) 417.Google Scholar
  34. 34.
    K. KAWABATA,Electrocomponent Sci. Technol. 8 (1981) 249.Google Scholar
  35. 35.
    Y. IGASAKI, H. MITSUHASHI, K. AZUMA and T. MUTO,Jpn. J. Appl. Phys. 17 (1978) 85.Google Scholar
  36. 36.
    K. HOFFMAN, G. W. RUBLOFF and R. C. MCCORKLE,Appl. Phys. Lett. 49 (1986) 1525.Google Scholar
  37. 37.
    H. R. SHANKS and L. LEY,J. Appl. Phys. 52 (1981) 811.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. O. Hyatt
    • 1
  • B. S. Chao
    • 2
  • H. Yamauchi
    • 3
  1. 1.Engineering Materials Group, Department of Mechanical EngineeringUniversity of WindsorWindsorCanada
  2. 2.Analytical and Structures LaboratoryEnergy Conversion Devices, Inc.TroyUSA
  3. 3.Ceramics Division, Superconductivity Research LaboratoryInternational Superconductivity Technology CenterTokyoJapan

Personalised recommendations