Journal of Biological Physics

, Volume 19, Issue 4, pp 295–308 | Cite as

Topological analysis of the fusion process between cellular and subcellular compartments

  • Tadeusz Janas
  • Agnieszka Janiak-Osajca
  • Teresa Janas


The study presents an application of the theory of homeomorphic transformations of topological manifolds and the operation of the connected sum of manifolds for topological analysis of membrane transformations during the fusion process between cellular and subcellular compartments. The biological cell and the subcellular structures in the form of vesicles are modelled by an arrangement of two concentric spheres corresponding to the inner and outer layer of the membrane bounding the vesicles. The analysis shows eight succeeding topological stages of membrane transformations during the fusion process and these stages are characterized. It is concluded that there is a vectorial translocation of lipid molecules from the outer layers of the membranes before the fusion process to the internal layer of the membrane bounding the vesicle after the fusion process and there is no lipid translocation in the reverse direction.

Key words

Cell fusion connected sum manifold membrane fusion subcellular compartments topological analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dimitrov, D.S. and Sowers, A.E.: A delay in membrane fusion: Lag times observed by fluorescence microscopy of individual fusion events inducted by an electric field pulse,Biochemistry 25 (1990), 8337–8344.Google Scholar
  2. 2.
    Lucy, J.A. and Ahkong, Q.F.: Membrane fusion: Fusogenic agents and osmotic forces,Subcellular Biochem. 14 (1989), 189–228.Google Scholar
  3. 3.
    Zimmermann, U. and Vienken, J.: Electric field-inducted cell-to-cell fusion.J. Membrane Biol. 67 (1982), 165–182.Google Scholar
  4. 4.
    Monck, J.R. and Fernandez, J.M.: The exocytotic fusion pore,J. Cell Biol. 119 (1992), 1395–1404.Google Scholar
  5. 5.
    Siegel, D.P.: Inverted micellar structures in bilayer membranes,Biophys. J. 45 (1984), 399–420.Google Scholar
  6. 6.
    Ellens, H., Siegel, D.P., Alford, D., Yeagle, P.L., Boni, L., Lis, L.J., Quinn, P.J., and Bentz, J.: Membrane fusion and inverted phases,Biochemistry 28 (1989), 3692–3703.Google Scholar
  7. 7.
    Siegel, D.P.: Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. I. Mechanism of theL αH II phase transition,Biophys. J. 49 (1986), 1155–1150.Google Scholar
  8. 8.
    Siegel, D.P.: Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion,Biophys. J. 49 (1986), 1171–1183.Google Scholar
  9. 9.
    Siegel, D.P.: Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. III. Isotropic and inverted cubic state formation via intermediates in transition betweenL α andH II phases,Chem. Phys. Lipids 42 (1986), 279–301.Google Scholar
  10. 10.
    Siegel, D.P., Burns, J.L., Chestnut, M.H., and Talmon, Y.: Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryotransmission electron microscopy,Biophys. J. 56 (1989), 161–169.Google Scholar
  11. 11.
    Wilson, D.W., Whiteheart, S.W., Orci, L., and Rothman, J.E.: Intracellular membrane fusion,Trends Biochem. Sci. 16 (1991), 334–337.Google Scholar
  12. 12.
    Rand, R.P. and Parsegian, V.A.: Hydration forces between phospholipid bilayers,Biochim. Biophys. Acta 988 (1989), 351–376.Google Scholar
  13. 13.
    Walde, P., Giuliani, A.M., Biocelli, C.A., and Luisi, P.L.: Phospholipid-based reverse micelles,Chem. Phys. Lipids 53 (1990), 265–288.Google Scholar
  14. 14.
    Hirsch, M.W.:Differential Topology, Springer-Verlag, New York, 1976.Google Scholar
  15. 15.
    Janich, K.:Topology, Springer-Verlag, New York, 1984.Google Scholar
  16. 16.
    Lis, L.J., McAlister, M., Fuller, N., Rand, R.P., and Parsegian, V.: Interactions between neutral phospholipid bilayer membranes,Biophys. J. 37 (1982), 657–666.Google Scholar
  17. 17.
    Wolfe, J., Perez, E., Bonanno, M., and Chapel, J.P.: The interaction and fusion of bilayer formed from unsaturated lipids,Eur. Biophys. J. 19 (1991), 275–281.Google Scholar
  18. 18.
    Gruen, D.W.R. and Marcelja, S.: Spatially varying polarization in water,J. Chem. Soc. Faraday Trans. 2/79 (1979), 225–242.Google Scholar
  19. 19.
    Kjellander, R. and Marcelja, S.: Perturbation of hydrogen bonding in water near polar surfaces,Chem. Phys. Lett. 120 (1985), 393–396.Google Scholar
  20. 20.
    Israelachvili, J.N. and Wennerstrom, H.: Hydration or steric forces between amphiphilic surfaces,Langmuir 6 (1990), 873–876.Google Scholar
  21. 21.
    Neher, E. and Marty, A.: Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells,Proc. Natl. Acad. Sci. U.S.A. 79 (1982), 6712–6716.Google Scholar
  22. 22.
    Pinto da Silva, P. and Nogueira, M.L.: Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora palmivora zoospores during encystment,J. Cell. Biol. 73 (1977), 161–181.Google Scholar
  23. 23.
    Cullis, P.R. and Hope, M.J.: Effect of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion,Nature 271 (1989), 672–674.Google Scholar
  24. 24.
    Blumenthal, R.: Membrane fusion, in R.D. Klausner, C. Kempf and J. van Renswoude (eds),Current Topics in Membranes and Transport, Vol. 29, Academic Press, New York, 1987, pp. 203–254.Google Scholar
  25. 25.
    Verkleij, A.J. and Ververgaert, P.H.J.Th.: Freeze-fracture morphology of biological membrane,Biochim. Biophys. Acta 515 (1978), 303–327.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Tadeusz Janas
    • 1
  • Agnieszka Janiak-Osajca
    • 1
  • Teresa Janas
    • 2
  1. 1.Department of Biophysics and Cybernetics, Institute of TechnologyPedagogical University of Zielona GoraZielona GoraPoland
  2. 2.Institute of PhysicsHigher College of Engineering of Zielona GoraZielona GoraPoland

Personalised recommendations