Advertisement

Polymer Bulletin

, Volume 21, Issue 1, pp 105–112 | Cite as

Rotational diffusion coefficient of rod-like polymer with a slight flexibility in semidilute and concentrated solutions

  • Seong Eun Chung
  • In Jae Chung
Article

Summary

A confined stiff chain model is suggested for the prediction of the rotational diffusion coefficient of a rigid rodlike polymer with a slight flexibility above the region of dilute solution (c≫1/L3). It shows a fairly good agreement with the experimental data of various polymers. Among them, PBLG and PBT with more rigidity are more consistent with the model when the log-jamming effect is considered. The predicted rotational diffusivity shows approximately the inverse seventh-power of length, which is less than 9 of Doi-Edwards tube model, but larger than the experimental value 5.7 of M-virus, while it shows the inverse power of concentration is a little larger than the value 2 of tube model except for the rodlike virus M-13.

Keywords

Polymer Experimental Data Diffusion Coefficient Concentrate Solution Chain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. (1).
    Onsager, L., Ann. N.Y. Acad. Sci. 51, 627 (1949)Google Scholar
  2. (2).
    Doi, M., Edwards, S.F., J. Chem Soc. Faraday Transaction II, 74, 560 (1978)Google Scholar
  3. (3).
    Doi, M., Edwards, S.F., ibid. 74, 918 (1978)Google Scholar
  4. (4).
    Doi, M., J. Poly. Sci. Polym. Phys. Edn. 19, 229 (1981)Google Scholar
  5. (5).
    Kirkwood, J.G., Auer, P.L., J. Chem. Phys. 19, 281 (1951)Google Scholar
  6. (6).
    Kirkwood, J.G., Plock, R.J., J. Chem. Phys. 24,665 (1958)Google Scholar
  7. (7).
    Zero, K., Pecora, R., Macromolecules, 15, 87 (1982)Google Scholar
  8. (8).
    Odell, J.A., Keller, A., Atkins, E.D.T., Macromolecules,18,1443 (1985)Google Scholar
  9. (9).
    Mori, Y., Ookubo, N., Hayakawa, R., Wada, Y., J. Polym. Sci. Polym. Phys. Edn. 20, 2111 (1982)Google Scholar
  10. (10).
    Maguire, J.F., McTague, J.P., Rondelez, F., Phys. Rev. Lett. 45, 1891 (1980), 47, 148 (1981)Google Scholar
  11. (11).
    Odijk, T., Macromolecules 16, 1340 (1983)Google Scholar
  12. (12).
    Doi, M., J. Polym. Sci. Polym. Sympos. 73, 93 (1985)Google Scholar
  13. (13).
    Doi, M., Edwards, S.F., “The theory of Polymer Dynamics”, Clarendon Press, Oxford (1986)Google Scholar
  14. (14).
    Jain, S., Cohen, C., Macromolecules, 14, 759 (1981)Google Scholar
  15. (15).
    Lekkerkerker, H.N.W., Coulon, Ph., Haegen, R.V.D., Deblieck, R., J. Chem. Phys. 80(7), 3427 (1980)Google Scholar
  16. (16).
    Lee, S.D., Meyer, R.B., J. Chem. Phys. 84(6), 3443 (1986)Google Scholar
  17. (17).
    Odijk, T., Macromolecules, 19, 2313 (1986)Google Scholar
  18. (18).
    Kuzuu, N., Doi, M., J. Phys. Soc. Jpn. 53(3), 1031 (1984)Google Scholar
  19. (19).
    Doi, M., Edwards, S.F., J.C.S. Faraday II, 74, 1802 (1978)Google Scholar
  20. (20).
    Edwards, S.F., Evans, K.E., J. Chem. Soc. Faraday Trans.2, 78, 113 (1982)Google Scholar
  21. (21).
    Kiss, G., Porter, R.S., J. Polym. Sci.;Polym. Symp., 65,193 (1978)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Seong Eun Chung
    • 1
  • In Jae Chung
    • 1
  1. 1.Department of Chemical EngineeringKorea Advanced Institute of Science and TechnologySeoulKorea

Personalised recommendations