Russian Chemical Bulletin

, Volume 42, Issue 1, pp 36–45 | Cite as

A theoretical investigation of the electronic and geometrical structure of silicon fluorides SiF n and their anions SiF n ,n=1−6

  • G. L. Gutsev
General and Inorganic Chemistry

Abstract

The electronic and geometrical structure of the ground and low-lying excited states of the SiF n and SiFn series (n = 1-6) are calculated using the density functional method. Energies of fragmentation through different decay channels were evaluated for both series and found to be in good accord with the experimental data and results of nonempirical calculations. The adiabatic electron affinity (EA) of the neutral series is estimated for the first time. The SiF4 anion is shown to be stable toward dissociation though its neutral precursor possesses adiabatic EA close to zero. The SiF5 and SiF6 anions are stable toward dissociation in the gas phase; however, the neutral radical SiF5 is near the stability threshold and SiF6 is unstable as regards dissociation to SiF4+F2. An interesting peculiarity of the silicon fluoride anions is their similar energy of F-detachment, i.e. the affinities of all the neutral SiFn, (n = 0-5) for the fluoride anion are similar.

Key words

electronic structure geometry optimization electron affinity fragmentation energy density functional method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F.Wells,Structural Inorganic Chemistry, Clarendon, Oxford, 1983,3.Google Scholar
  2. 2.
    JANAF Thermochemical Tables, 3rd ed., 1985.Google Scholar
  3. 3.
    A.A.Christodoulides, D.L.McCorkle, and L.G.Christophorou,Electron-Molecule Interactions and Their Applications, Ed. L.G.Christophorou, Academic Press, New York, 1984,2, Chapt. 6.Google Scholar
  4. 4.
    D.L.Deadmore and W.F.Bradley,Acta Cryst., 1962,15, 186.Google Scholar
  5. 5.
    D.H.Brown, K.R.Dixon, C.M.Livingston, R.H.Nuttall, and D.W.A.Sharp,J.Chem.Soc. (A), 1967, 100.Google Scholar
  6. 6.
    P.Ho and C.F.Melius,J.Phys.Chem., 1990,94, 5120.Google Scholar
  7. 7.
    G.L.Gutsev,Chem.Phys, 1992,163, 59.Google Scholar
  8. 8.
    T.Ziegler and G.L.Gutsev,J.Comp.Chem., 1991,13, 70.Google Scholar
  9. 9.
    J.C.Slater,Quantum Theory of Molecules and Solids, McGraw-Hill: New York, 1974, Vol. 4.Google Scholar
  10. 10.
    E.J.Baerends, D.E.Ellis, and P.Ros,Chem.Phys., 1973,2,Google Scholar
  11. 11.
    L.Versluis and T.Ziegler,J.Chem.Phys., 1988,88, 322.Google Scholar
  12. 12.
    S.H.Vosko, L.Wilk, and M.Nusair,Can.J.Phys., 1980,58, 1200.Google Scholar
  13. 13.
    A.D.Becke,Phys.Rev., 1988,A38, 3098.Google Scholar
  14. 14.
    L.Fan and T.Ziegler,J.Chem.Phys., 1991,95, 7401.Google Scholar
  15. 15.
    J.G.Snijders, E.J.Baerends, and P.Vernooijs,At.Nucl.Data Tables, 1982,26, 483Google Scholar
  16. 16.
    G.L.Gutsev and A.A.Levin,Chem.Phys.Lett., 1978,57, 235.Google Scholar
  17. 17.
    G.L.Gutsev and A.P.Klyagina,Chem.Phys., 1983,75, 243.Google Scholar
  18. 18.
    H.Hotop and W.C.Lineberger,J.Phys.Chem., Ref. Data 1985,14, 731.Google Scholar
  19. 19.
    K.Tanaka, Y.Akiyama, and T.Tanaka,J.Mol.Spectrosc., 1989,137, 55.Google Scholar
  20. 20.
    K.P.Huber and G.Herzberg,Constants of Diatomic Molecules, Van-Nostrand-Reinhold, New York, 1979.Google Scholar
  21. 21.
    S.P.Karma and F.Grein,J.Mol.Spectrosc., 1987,122, 28.Google Scholar
  22. 22.
    B.J.Garrison and W.A.Goddard III,J.Chem.Phys., 1987,87, 1307.Google Scholar
  23. 23.
    E.W.Ignacio and H.B.Schlegel,J.Chem.Phys., 1990,92, 5404.Google Scholar
  24. 24.
    J.M.Robbe,J.Mol.Spectrosc., 1985,112, 223.Google Scholar
  25. 25.
    R.W.Martin and A.J.Merer,Can.J.Phys., 1973,51, 634.Google Scholar
  26. 26.
    V.M.Rao, R.F.Curl, Jr., P.L.Timms, and J.L.Margrave,J.Chem.Phys., 1965,43, 2557.Google Scholar
  27. 27.
    R.N.Dixon and M.Halle,J.Mol.Spectrosc., 1970,36, 192.Google Scholar
  28. 28.
    B.Wirsam,Chem.Phys.Lett., 1973,22, 360.Google Scholar
  29. 29.
    M.E.Colvin, R.S.Grev, H.F.Schaefer III, and J.Bicerano,Chem. Phys. Lett., 1983,99, 399.Google Scholar
  30. 30.
    K.Krogh-Jespersen,J.Am.Chem.Soc., 1985,107, 537.Google Scholar
  31. 31.
    S.K.Shin, W.A.Goddard III, and J.L.Beauchamp,J.Chem.Phys., 1990,93, 4986.Google Scholar
  32. 32.
    G.L.Gutsev and T.Ziegler,J.Phys.Chem., 1991,95, 7220.Google Scholar
  33. 33.
    D.R.Rao,J.Mol.Spectrosc., 1970,34, 284.Google Scholar
  34. 34.
    A.C.Hopkinson, C.F.Rodriquez, and M.H.Lien,Can.J.Chem., 1990,68, 1309.Google Scholar
  35. 35.
    H.B.Schlegel,J.Phys. Chem., 1984,88, 6254.Google Scholar
  36. 36.
    D.A.Dixon, A.J.Arduengo III, and T.Fukunaga,J.Am.Chem.Soc., 1986,108, 2461.Google Scholar
  37. 37.
    G.L.Gutsev,Izv. Akad. Nauk. Ser. Khim., 1992, 2219 [Bull.Acad.Sci. Div.Chem.Sci., 1992,41].Google Scholar
  38. 38.
    J.L.-F.Wang, J.L.Margrave, and J.L.Franklin,J.Chem.Phys., 1973,58, 5417.Google Scholar
  39. 39.
    K.Hagen and K.Hedberg,J.Chem.Phys., 1973,59, 1549.Google Scholar
  40. 40.
    B.Beadley, D.P.Brown, and J.M.Freeman,J.Mol.Struct., 1973,18, 337.Google Scholar
  41. 41.
    C.W.Patterson and A.S.Pine,J.Mol.Spectrosc., 1982,96, 404.Google Scholar
  42. 42.
    R.S.McDowell, M.J.Reisfeld, C.W.Patterson, B.J.Krohn, M.C.Vasquez, and G.A.Laguna,J.Chem.Phys., 1982,77, 4337.Google Scholar
  43. 43.
    R.Morton and K.F.Preston,Mol.Phys., 1975,30, 1213.Google Scholar
  44. 44.
    K.A.G.MacNeil and J.C.J.Thynne,Int.J.Mass Spectrom. Ion Processes, 1970,3, 455.Google Scholar
  45. 45.
    G.L.Gutsev and A.I.Boldyrev,Uspekhi Khimii, 1987,56, 889 [Rus.Chem.Rev., 1987,56].Google Scholar
  46. 46.
    H.C.Clark and K.R.Dixon,Chem.Commun., 1967, 717.Google Scholar
  47. 47.
    J.W.Larson and T.B.McMahon,J.Am.Chem.Soc., 1985,107, 766.Google Scholar
  48. 48.
    P.Bird, J.F.Harrod, and K.A.Than,J.Am.Chem.Phys., 1974,96, 1222.Google Scholar
  49. 49.
    D.Schomburg and R.Krebs,Inorg.Chem., 1984,23, 1378.Google Scholar
  50. 50.
    J.Deiters and R.R.Holmes,J.Am.Chem.Soc., 1990,112, 7197.Google Scholar
  51. 51.
    G.L.Gutsev and A.I.Boldyrev,Zh.Neorg.Khim., 1981, 26, 2353 [Rus.J.Inorg.Chem., 1981,26]Google Scholar
  52. 52.
    G.L.Gutsev,Chem. Phys. Lett., 1991,184, 305.Google Scholar
  53. 53.
    W.C.Hamilton,Acta Cryst., 1962,15, 353.Google Scholar
  54. 54.
    P.A.G.O'Hare and A.C.Wahl,J.Chem.Phys., 1971,55, 666.Google Scholar
  55. 55.
    T.Ziegler and G.L.Gutsev,J.Chem.Phys., 1992,96, 7623.Google Scholar
  56. 56.
    J.H.Richardson, L.M.Stephenson, and J.I.Brauman,Chem.Phys.Lett., 1975,30, 17.Google Scholar
  57. 57.
    F.M.Page and G.C.Goode,Negative Ions and the Magnetron, Wiley, New York, 1969.Google Scholar
  58. 58.
    L.M.Babcock and G.E.Streit,J.Chem.Phys., 1981,75, 3864.Google Scholar
  59. 59.
    R.Walsh,Acc. Chem. Res., 1981,14, 246.Google Scholar
  60. 60.
    J.L.-F.Wang, J.L.Margrave, and J.L.Franklin,J.Chem.Phys., 1974,60, 2158.Google Scholar
  61. 61.
    T.C.Ehlert and J.L.Margrave,J.Chem.Phys., 1964,41, 1066.Google Scholar
  62. 62.
    P.J. Van denHoek, W.Ravenek, and E.J.Baerends,Phys.Rev., 1988,B38, 12508.Google Scholar
  63. 63.
    G.L.Gutsev,J.Phys.Chem., 1991,95, 5773.Google Scholar
  64. 64.
    G.L.Gutsev and T.Ziegler,J.Phys.Chem., 1991,95, 5773.Google Scholar
  65. 65.
    P.A.G.O'Hare,J.Chem.Phys., 1973,59, 3842.Google Scholar
  66. 66.
    D.L.Wilhite and L.Spialter,J.Am.Chem.Soc., 1973,95, 2100.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. L. Gutsev
    • 1
  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations