The arrangement in mean elements space of the periodic orbits close to that of the Moon

  • G. B. Valsecchi
  • E. Perozzi
  • A. E. Roy
  • B. A. Steves
Session On Misellaneous Problems

Abstract

In a simplified model of the Earth-Moon-Sun system based on the restricted circular 3-dimensional 3-body problem, it is possible to find numerically a set of 8 periodic orbits whose time evolutions closely resemble that of the Moon's orbit. These orbits have a period of 223 synodic months (i.e. the period of the Saros cycle known for more than two millennia as a means of predicting eclipses), and are characterized by a secular rotation of the argument of perigee ω. Periodic orbits of longer durations exhibiting this last feature are very abundant in Earth-Moon-Sun dynamical models. Their arrangement in the space of the mean orbital elementsē-ī for various values of the lunar mean motion is presented.

Key words

Periodic orbits motion of the Moon Saros cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brouwer D., Clemence, G.M.: 1961,Methods of Celestial Mechanics, Academic, New YorkGoogle Scholar
  2. Delaunay Ch.: 1872, ‘Note sur les mouvements du périgée et du noeud de la Lune’,Compt. rend. hebdom. Acad. Sci. 74, 17–21Google Scholar
  3. Perozzi E., Roy A.E., Steves B.A., Valsecchi G.B.: 1991, ‘Significant high number commensurabilities in the main lunar problem. I: the Saros as a near periodicity of the Moon's orbit’,Celest. Mech. & Dynam. Astron. 52, 241–261Google Scholar
  4. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: 1986,Numerical Recipes, Cambridge Univ. Press, CambridgeGoogle Scholar
  5. Roy A.E., Ovenden M.W.: 1955, ‘On the occurrence of commensurable mean motions in the solar system. II. The mirror theorem’,Mon. Not. R. Acad. Sci. 115, 296–309Google Scholar
  6. Roy A.E., Steves B.A., Valsecchi G.B., Perozzi E.: 1991, in A.E. Roy, ed(s).,Predictability, Stability and Chaos in N-Body Dynamical Systems, Plenum, London, 273–282Google Scholar
  7. Steves B.A.: 1990,Finite-Time Stability Criteria for Sun-Perturbed Planetary Satellites, PhD Thesis, Univ. GlasgowGoogle Scholar
  8. Valsecchi G.B., Perozzi E., Roy A.E., Steves B.A.: 1991,Periodic orbits close to that of the Moon. A postscript to a discovery by the ancient Chaldeans, I.A.S. Internal Report n. 2Google Scholar
  9. Valsecchi G.B., Perozzi E., Roy A.E., Steves B.A., 1992, ‘Periodic orbits close to that of the Moon’, submitted toAstron. Astrophys. Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • G. B. Valsecchi
    • 1
  • E. Perozzi
    • 2
  • A. E. Roy
    • 3
  • B. A. Steves
    • 4
  1. 1.I.A.S. — C.N.R., Reparto di PlanetologiaRomaItaly
  2. 2.Telespazio s.p.a.RomaItaly
  3. 3.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  4. 4.Department of MathematicsGlasgow PolytechnicGlasgowUK

Personalised recommendations