The problem of critical inclination combined with a resonance in mean motion in artificial satellite theory

  • Fabienne Delhaise
  • Jacques Henrard
Session On General Dynamical Systems


Artificial Satellite Theory Artificial Satellite Critical Inclination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brouwer, D.: 1959, ‘Solution of the Problem of Artificial Satellite Theory without Drag’,Astron. J,64, 378–397.Google Scholar
  2. Delhaise, F.: 1989, ‘Geopotential Perturbations of the Tundra and Molniya Orbits’,ESA, MAS Working Paper,288.Google Scholar
  3. Giacaglia, G. E.: 1976, ‘A Note on the Inclination Functions of the Satellite Theory’,Celest. Mech.,13, 503–509.Google Scholar
  4. Garfinkel, B.: 1959, ‘The orbit of a Satellite of an Oblate Planet’,Astron. J,64, 353.Google Scholar
  5. Jupp, A.H.: 1988, ‘The Critical Inclination Problem - 30 Years of Progress’,Celest. Mech.,43, 127–138.Google Scholar
  6. Henrard, J.: 1990, ‘A Semi-Numerical Perturbation Method for Separable Hamiltonian systems’,Celest. Mech.,49, 43–67.Google Scholar
  7. Kozai, Y.: 1959, ‘The Motion of a Close Earth Satellite’,Astron. J.,64, 367–377.Google Scholar
  8. Lecohier, G., Guermonprez, V. and Delhaise, F.: 1989, ‘European Molniya and Tundra Orbit Control’,CNES, Mécanique Spatiale, Symposium International en Mécanique Spatiale, Toulouse (France), 165–191.Google Scholar
  9. Moser, J.: 1958, ‘New Aspects in the Theory of Stability of Hamiltonian Systems’,Comm. Pure App. Math.,XI, 81–114.Google Scholar
  10. Sochilina, A.S.: 1982, ‘On the Motion of a Satellite in Resonance with its Rotating Planet’,Celest. Mech.,26, 337–352.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Fabienne Delhaise
    • 1
  • Jacques Henrard
    • 1
  1. 1.Department of MathematicsFacultés N.D. de la PaixNamurBelgium

Personalised recommendations