The problem of critical inclination combined with a resonance in mean motion in artificial satellite theory

  • Fabienne Delhaise
  • Jacques Henrard
Session On General Dynamical Systems


Artificial Satellite Theory Artificial Satellite Critical Inclination 


  1. Brouwer, D.: 1959, ‘Solution of the Problem of Artificial Satellite Theory without Drag’,Astron. J,64, 378–397.Google Scholar
  2. Delhaise, F.: 1989, ‘Geopotential Perturbations of the Tundra and Molniya Orbits’,ESA, MAS Working Paper,288.Google Scholar
  3. Giacaglia, G. E.: 1976, ‘A Note on the Inclination Functions of the Satellite Theory’,Celest. Mech.,13, 503–509.Google Scholar
  4. Garfinkel, B.: 1959, ‘The orbit of a Satellite of an Oblate Planet’,Astron. J,64, 353.Google Scholar
  5. Jupp, A.H.: 1988, ‘The Critical Inclination Problem - 30 Years of Progress’,Celest. Mech.,43, 127–138.Google Scholar
  6. Henrard, J.: 1990, ‘A Semi-Numerical Perturbation Method for Separable Hamiltonian systems’,Celest. Mech.,49, 43–67.Google Scholar
  7. Kozai, Y.: 1959, ‘The Motion of a Close Earth Satellite’,Astron. J.,64, 367–377.Google Scholar
  8. Lecohier, G., Guermonprez, V. and Delhaise, F.: 1989, ‘European Molniya and Tundra Orbit Control’,CNES, Mécanique Spatiale, Symposium International en Mécanique Spatiale, Toulouse (France), 165–191.Google Scholar
  9. Moser, J.: 1958, ‘New Aspects in the Theory of Stability of Hamiltonian Systems’,Comm. Pure App. Math.,XI, 81–114.Google Scholar
  10. Sochilina, A.S.: 1982, ‘On the Motion of a Satellite in Resonance with its Rotating Planet’,Celest. Mech.,26, 337–352.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Fabienne Delhaise
    • 1
  • Jacques Henrard
    • 1
  1. 1.Department of MathematicsFacultés N.D. de la PaixNamurBelgium

Personalised recommendations