Skip to main content
Log in

Review of planetary and satellite theories

  • Session On Planetary Theories
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Planetary and satellite theories have been historically and are presently intimately related to the available computing capabilities, the accuracy of observational data, and the requirements of the astronomical community. Thus, the development of computers made it possible to replace planetary and lunar general theories with numerical integrations, or special perturbation methods. In turn, the availability of inexpensive small computers and high-speed computers with inexpensive memory stimulated the requirement to change from numerical integration back to general theories, or representative ephemerides, where the ephemerides could be calculated for a given date rather than using a table look-up process. In parallel with this progression, the observational accuracy has improved such that general theories cannot presently achieve the accuracy of the observations, and, in turn, it appears that in some cases the models and methods of numerical integration also need to be improved for the accuracies of the observations.

Planetary and lunar theories were originally developed to be able to predict phenomena, and provide what are now considered low accuracy ephemerides of the bodies. This proceeded to the requirement for high accuracy ephemerides, and the progression of accuracy improvement has led to the discoveries of the variable rotation of the Earth, several planets, and a satellite. By means of mapping techniques, it is now possible to integrate a model of the motion of the entire solar system back for the history of the solar system. The challenges for the future are: Can general planetary and lunar theories with an acceptable number of terms achieve the accuracies of observations? How can numerical integrations more accurately represent the true motions of the solar system? Can regularly available observations be improved in accuracy? What are the meanings and interpretations of stability and chaos with respect to the motions of the bodies of our solar system?

There has been a parallel progress and development of problems in dealing with the motions of artificial satellites. The large number of bodies of various sizes in the limited space around the Earth, subject to the additional forces of drag, radiation pressure, and Earth zonal and tesseral forces, require more accurate theories, improved observational accuracies, and improved prediction capabilities, so that potential collisions may be avoided. This must be accomplished by efficient use of computer capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beletic, J. W., Goody, R.M., and Tholen, J.D. (1989) “Orbital Elements of Charon from Speckle Interferometry,” Icarus 79, 38–46.

    Google Scholar 

  • Bretagnon, P. (1980) “Theorie au deuxieme ordre des planetes interieures,” Astron. Astrophys. 84, 329–341.

    Google Scholar 

  • Bretagnon, P (1981) “Construction d'une theorie des grosses planetes par une methods iterative,” Astron. Astrophys. 101, 342–349.

    Google Scholar 

  • Bretagnon, P. (1982) “Theorie du mouvement de l'ensemble des planetes. Solution VSSOP82,” Astron. Astrophys. 114, 278–288.

    Google Scholar 

  • Bretagnon, P. (1990) “Methode iterative de construction d'une theorie general planetaire,” Astron. Astrophys 231, 561–570.

    Google Scholar 

  • Bretagnon, P. and Simon, J.L. (1990) “Theorie general du couple Jupiter — Saturne par une methode iterative,” Astron. Astrophys. 239, 387–398.

    Google Scholar 

  • Brown, E.W. (1919), Tables of the Motion of the Moon (Yale Univ. Press. New Haven, CT)

    Google Scholar 

  • Broucke, R. and Konopliv, A. (1987) “Some models for the Motion of the Co-orbital Satellites of Saturn,” In Roy, A.E. (ed) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, Kluwer A.P., Dordrecht, 155–169.

  • Brouwer, D. (1959) “Solution of the Problem of Artificial Satellite Theory Without Drag,” Astron J. 64, 378–397.

    Google Scholar 

  • Brouwer, D. and Hori, G. (1961) “Theoretical Evaluation of Atmospheric Drag Effects in the Motion of an Artificial Satellite,” Astron J. 66, 193.

    Google Scholar 

  • Bykova, L.E. and Shikhalev, V.V. (1986) “Developing High Accuracy Numerical Theories of Motion of Outer Satellites of Jupiter and Saturn,” Relativity in Celestial Mechanic and Astrometry, (J. Kovalevsky and V.A. Brumberg eds), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Carpino, M., Milani, A. and Nobili, A.M. (1987) “Long-term Numerical Integrations and Synthetic Theories for the Motion of the Outer Planets,” Astron. Astrophys. 181 182–194.

    Google Scholar 

  • Chapront-Touze, M. (1990) “Orbits of the Martian Satellites from ESAPHO and ESADE Theories,” Astron. Astrophys. 240, 159–172.

    Google Scholar 

  • Chapront-Touze, M. (1988) “ESAPHO: a semi-analytical theory for the orbital motion of Phobos,” Astron. Astrophys. 200, 255–268.

    Google Scholar 

  • Chapront-Touze, M. and Chapront, J. (1980) “Les perturbations planetaires de la Lune,” Astron. Astrophys. 91, 233–248.

    Google Scholar 

  • Chapront-Touze, M. and Chapront J. (1983). “The Lunar Ephemeris ELP 2000,” Astron. Astrophys. 124, 50–62.

    Google Scholar 

  • Chapront-Touze, M. and Chapront J. (1988) “ELP 200-85: “A Semi-analytical Lunar Ephemeris Adequate for Historical Times,” Astron. Astrophys. 190, 342–352.

    Google Scholar 

  • Coffey, S. and Deprit, A. (1980) “Fast Evaluation of Fourier Series,” Astron. Astrophys. 81, 310–315.

    Google Scholar 

  • Deprit, A. (1981) “The Elimination of the Parallax in Satellite,” Celest. Mech. 24, 111.

    Google Scholar 

  • Deprit, A., Henrard, J. and Rom, A. (1971), “Analytical Lunar Ephemeris: I Definition of the Main Problem,” Astron. Astrophys. 10 257.

    Google Scholar 

  • Deprit, A., Henrard, J. and Rom, A. (1971) “Analytical Lunar Ephemeris: Delaunay's Theory” Astron. J. 76, 269.

    Google Scholar 

  • Deprit, A., Henrard, J. and Rom, A. (1971) “Analytical Lunar Ephemeris: The Variational Orbit,” Astron. J. 76, 273.

    Google Scholar 

  • Dermott, S.F. and Murray, C.D. (1981) “The Dynamics of Tadpole and Horseshoe Orbits I Theory” Icarus 48, 1–11; “II The Coorbital Satellites of Saturn,” Icarus 48, 12–22.

    Google Scholar 

  • Duriez, L. (1979) Approche d'une Theorie Generale Planetaire en variable elliptiques heliocentriques, These, Lille.

    Google Scholar 

  • Duriez, L. and Vienne, A (1991) “A general theory of motion for the eight major satellites of Saturn, I. Equations and method of resolution,” Astron. Astrophys. 243, 263.

    Google Scholar 

  • Garfinkel, B. (1959) “The Orbit of Satellite of an Oblate Planet,” Astron. J. 64, 378–397.

    Google Scholar 

  • Gedeon, G.S. (1969) “Tesseral Resonance Effects on Satellite Orbits,” Celest. Mech. 1, 167.

    Google Scholar 

  • Giacaglia, G. (1964) “The Influence of High Order Zonal Harmonies on the Motion of an Artificial Satellite Without Drag,” Astron J. 69, 303.

    Google Scholar 

  • Goodrich, E. F. and Carpenter, L. (1966) “Computation of General Planetary Perturbations for Resonance Cases,” Goddard Space Flight Center X643-66-133.

  • Harrington, R.S. and Seidelmann, P.K. (1981) “The Dynamics of the Saturn Satellites 1980 S1 and 1980 S3,” Icarus 47, 97–99.

    Google Scholar 

  • Henrard, J. (1976) “On the Artificial Satellite Theory,” Celest. Mech. 14, 331.

    Google Scholar 

  • Henrard, J (1979) “A New Solution to the Main Problem of Lunar Theory,” Celest. Mech. 19, 337.

    Google Scholar 

  • Hoots, F.R. and France, R.G. (1987) “An Analytic Satellite Theory Using Gravity and a Dynamic Atmosphere,” Celest. Mech. 40, 1–18.

    Google Scholar 

  • Hoots, F. (1981), “Reformulation of the Brouwer Geopotential Theory for Improved Computational Efficiency,” Celest. Mech. 24, 367.

    Google Scholar 

  • Innanen, K. A. and Mikkola, S. (1987) “Where are the Saturnian Trojans?” In Roy, A. E. (ed) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems; Kluwer Academic Publishers, Dordrecht, 21–26.

    Google Scholar 

  • Ivanov, N. M., Kolyuka, Yu F, Kudryavotsev, S.M. and Tikhonov, V.F. (1988) “The Motion of Phobos: orbit parameters from ground-based astrometry and the Mariner 9 and Viking 1, 2 data:,” Pis'me Astron Zh 14, 956–960, Sov. Astron. Lilt 14, 5.

    Google Scholar 

  • Jacobson, R.A. (1990) “The Orbits of the Satellites of Neptune,” Astron. Astrophys. 231, 241–250.

    Google Scholar 

  • Kammeyer, P. (1989) “Compressed Planetary and Lunar Ephemerides,” in Applications of Computer Technology to Dynamical Astronomy, (P.K. Seidelmann and J. Kovalevsky eds) Kluwer Academic Publishers, Dordrecht, 311–316.

    Google Scholar 

  • Kaplan, G.H., Doggett, L.E. and Seidelmann, P.K. (1976) Almanac for Computers, USNO Circular 155.

  • Kovalevsky, J. (1987) “Orbital Evolution” In Roy A.E. (ed) Long - Term Dynamical Behaviour of Natural and Artificial N-Body Systems, Kluwer A.P., Dordrecht, 27–46.

  • Kozai, Y. (1959) “The Motion of a Close Earth Satellite,” Astron. J. 64, 367–377.

    Google Scholar 

  • Kozai, Y. (1962) “Second-order Solution of Artificial Satellite Theory Without Air Drag,” Astron. J. 67, 446.

    Google Scholar 

  • Laskar, J. (1984) “Theorie generale planetaire: elements orbitaux des planetes sur un million d'annes,” These de Troisieme cycle, Observatoire de Paris.

  • Laskar, J. (1986) “Secular Terms of Classical Planetary Theories Using the Results of General Theory,” Astron. Astrophys. 157, 59–70.

    Google Scholar 

  • Laskar, J. (1989) “A Numerical Experiment on the Chaotic Behaviour of the Solar System,” Nature 338 237–238.

    Google Scholar 

  • Laskar, J. (1990) “The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones,” Icarus 88, 266–291.

    Google Scholar 

  • Laskar, J. and Jacobson, R.A. (1987) “An Analytical Ephemeris of the Uranian Satellites,” Astron. Astrophys. 188, 212–224.

    Google Scholar 

  • Lazzaro, D. (1991) “Semi-Analytical Theory for the Motion of Uranus' Satellites,” Astron. Astrophys. 250, 253–265.

    Google Scholar 

  • Leverrier, V.J.J. (1858) Ann Obs Paris 4, 1.

    Google Scholar 

  • Leverrier, V.J.J. (1859) Ann Obs Paris 5, 1.

    Google Scholar 

  • Leverrier, V.J.J. (1861a) Ann Obs Paris 6, 1.

    Google Scholar 

  • Leverrier, V.J.J. (1861b) Ann Obs Paris 6, 185.

    Google Scholar 

  • Lieske, J.H. (1977) “Theory of Motion of Jupiter's Galilean Satellites,” Astron. Astrophys. 56, 333.

    Google Scholar 

  • Lieske, J.H. (1980) “Improved Ephemerides of the Galilean Satellites,” Astron. Astrophys. 82, 340–348.

    Google Scholar 

  • Liu, J.J.F. and Alford, R.L. (1980) “Semianalytic Theory for a Close-Earth Artificial Satellite,” J. Guidance and Control 3, 304–11. (Errata 1981 Guidance and Control 4).

    Google Scholar 

  • Lyddane, R.H. (1963) “Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite,” Astron J. 68, 555.

    Google Scholar 

  • Message, P.J. (1987) “Planetary Perturbation Theory from Lie Series, including Resonance and Critical Arguments” In Roy A.E. (ed) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, Kluwer A.P., Dordrecht, 47–72.

    Google Scholar 

  • Milani, A. (1987) “Secular Perturbations of the Planetary Orbits and their representation as Series,” In Roy, A.E. (ed) Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, Kluwer A.P., Dordrecht, 73–108.

    Google Scholar 

  • Milani, A., Nobili, A.M., and Carpino, M. (1989) “Dynamics of Pluto,” Icarus 82, 200–217.

    Google Scholar 

  • Miller, B. R. (1989) “A Program Generator for Efficient Evaluation of Fourier Series,” In proceedings of ACM-SIGSAM International Symposium on Symbolic and Algebraic computation; ISSAC-89, p. 199–206, ACM Press.

  • Mittleman, D. and Jezewski, D. (1982) “An Analytic Solution to the Classical Two Body Problem with Drag,” Celest. Mech. 28, 401.

    Google Scholar 

  • Newcomb, S. (1898) Astronomical Papers American Ephemeris VI (U S Government Printing Office, Washington, DC).

    Google Scholar 

  • Newhall, XX, Standish, E.M. and Williams, J.G. (1983) “DE102: A Numerically Integrated Ephemeris of the Moon and Planets Spanning Forty-Four Centuries,” Astron. Astrophys. 125, 150–167.

    Google Scholar 

  • Newhall, XX (1989) “Numerical Representation of Planetary Ephemerides,” Celest. Mech 45, 305–310.

    Google Scholar 

  • Nicholson, P.D., Hamilton, D.P., Mathews, K. and Yoder, C.F. (1992) “New Observations of Saturn's Coorbital Satellites,” Icarus in press.

  • Nobili, A.M., Milani, A., and Carpino, M. (1989) “Fundamental Frequencies and Small Divisors in the Orbits of the Outer Planets,” Astron. Astrophys. 210, 313–336.

    Google Scholar 

  • Owen, W.M., Jr and Synnott, S.P. (1987) “Orbits of the Ten Small Satellites of Uranus,” Astron J. 93, 1268.

    Google Scholar 

  • Owen, W.M. Jr., Vaughan, R.M. and Synnott, S.P. (1991) “Orbits of the Six New Satellites of Neptune,” Astron J. 101, 1511–1515.

    Google Scholar 

  • Pascu, D. (1992) private communication.

  • Reitsema, H.J., (1981) “The Libration of the Saturnian Satellite Dione B,” Icarus 48, 23–28.

    Google Scholar 

  • Richardson, D. (1982) “A Third Order Intermediate Orbit for Planetary Theory,” Celest. Mech. 26, 187–195.

    Google Scholar 

  • Rohde, J.R. (1992) “Outer Satellites of Jupiter,” unpublished.

  • Roy, A.E., Walker, I.W., MacDonald, A.J., Williams, I.P., Fox, K., Murray, C.D., Milani, A., Nobili, A.M., Message, P.J., Sinclair, A.T., and Carpino, M. (1988) “Project Longstop” Vistas in Astronomy 32, 95–116.

    Google Scholar 

  • Saari, D. (1974) “Regularization and the Artificial Earth Satellite Problem,” Celest. Mech. 9, 55.

    Google Scholar 

  • Segan, S. (1988) “Analytical Computation of Atmospheric Drag Effects,” Celest. Mech. 41, 381.

    Google Scholar 

  • Seidelmann, P.K. “An Interactive Method of General Perturbations Programmed for a Computer,” Celest. Mech. 2, 134.

  • Sharaf, Sh. G (1955) “Theory of Motion of the Planet Pluto pt 1” Transactions of the Institute of Theoretical Astronomy, 4 USSR Academy of Sciences Press, Moscow-Leningrad, 1955, NASA Tech Translation F490, Jan 1969.

    Google Scholar 

  • Sharaf, Sh. G and Budnikova, N.A. (1964) “Theory of Motion of the Planet Pluto pt 2,3,4” Transactions of the Institute of Theoretical Astronomy 10, “Nauka” Press, Moscow-Leningrad 1964, NASA Tech Translation F-491, Jan 1969.

    Google Scholar 

  • Simon, J.L. (1983) “Theorie du mouvement des quatre grosses planetes. Solution TOP82,” Astron. Astrophys. 120, 197–202.

    Google Scholar 

  • Simon, J.L. and Bretagnon, P. (1975) “Perturbations du premier ordre des quatre grosses planetes. Variations litterales,” Astron. Astrophys. 42 259–263.

    Google Scholar 

  • Simon, J.L. and Bretagnon, P. (1975) “Resultats des perturbations du premier ordre des quatre grosses planetes Variations Litterales,” Astron Astrophys. Suppl 22, 107–160.

    Google Scholar 

  • Simon, J.L. and Bretagnon, P. (1978). “Perturbations du deuxieme ordre des quatre grosses planetes. Variations seculaires du demi grand axe,” Astron. Astrophys. 69, 369–372.

    Google Scholar 

  • Simon, J.L. and Bretagnon, P., (1978). “Resultats des perturbations du deuxieme ordre des quatre grosses planetes,” Astron. Astrophys., Suppl. 34, 183–194.

    Google Scholar 

  • Simon, J.L. and Bretagnon, P. (1984). “Theorie du mouvement de Jupiter et Saturne sur un intervalle de temps de 6000 ans. Solution JASON84,” Astron. Astrophys. 138, 169–178.

    Google Scholar 

  • Sinclair, A.T. (1989) “The Orbits of the Satellites of Mars Determined from Earth-based and Spacecraft Observations,” Astron. Astrophys. 220, 321–328.

    Google Scholar 

  • Standish, E.M. (1982) “The JPL Planetary Ephemerides,” Celest. Mech. 26, 191–186.

    Google Scholar 

  • Synnott, S.P., Peters C.F., Smith, B.A. and Marabito, L.A. (1981) “Orbits of The Small Satellites of Saturn,” Science 212, 191.

    Google Scholar 

  • Synnott, S.P., Terrile, R.J., Jacobson, R.A. and Smith, B.A. (1983) “Orbits of Saturn's F Ring and its Shepherding Satellites” Icarus 53, 156–158.

    Google Scholar 

  • Synnott, S.P. (1984) “Orbits of the Small Inner Satellites of Jupiter,” Icarus 58, 178–181.

    Google Scholar 

  • Taylor, D.B., (1992) “A Synthetic Theory for the Perturbations of Titan on Hyperion,” Astron. Astrophys. (in press).

  • Thuillot, W. and Vu, D.T. (1983) “Analytical Theory of the Motion of the Galilean Satellites of Jupiter. The First Approximation,” In: S. Ferraz Mello and P.E. Nacozy (eds) The Motion of Planets and Natural and Artificial Satellites, Universidade de Sao Paulo, 273.

  • Vienne, A. and Duriez, L. (1991) “A General Theory of Motion for the Eight Major Satellites of Saturn, II. Short-period Perturbations,” Astron. Astrophys. 246, 619–633.

    Google Scholar 

  • Vinti, J.P. (1959) “A New Method of Solution for Unretarded Satellite Orbits, J. Res. NBS 63 B; Math Phys 2.

  • Vinti, J.P. (1961) “Theory of an Accurate Intermediary Orbit for Satellite Astronomy,” J. Res NBS 65 b; Math. Math. Phys. 3, 169–201.

  • Vu, D.T. (1977) “Une Nouvelle Presentation des Ephemerides des Satellites Galileans de Jupiter,” Astron. Astrophys. Suppl. 30, 361–367.

    Google Scholar 

  • Watson, J.S., Mistretta, G.D. and Bonavito, N.L. (1975) “An Analytical Method to Account for Drag in the Vinti Satellite Theory,” Celest. Mech 11, 145.

    Google Scholar 

  • Williams, C.A., Van Flandern, T.C. and Wright, E. (1987) “First Order Planetary Perturbations with Elliptic Functions,” Celest. Mech. 40, 367–391.

    Google Scholar 

  • Williams, C.A. (1992) “A Planetary Theory with Elliptic Functions an Elliptic Integrals Exhibiting No Small Divisors,” Chaos meeting in Angra dos Reis.

  • Wisdom, J. and Holman, M. (1991) “Symplectic Maps for the N-Body Problem,” Astron. J. 102, 1528.

    Google Scholar 

  • Wnuk, E. (1988) “Tesseral Harmonic Perturbations for High Order and Degree Harmonics,” Celest. Mech. 44, 179.

    Google Scholar 

  • Yallop, B.D. (1981) “Compact Data for Navigation and Astronomy 1981–1985,” Royal Greenwich Observatory Bulletin No. 185.

  • Yoder, C.F., Colombo, G., Synnott, S.P. and Yoder, K.A. (1983) “Theory of Motion of Saturn's Coorbiting Satellites,” Icarus 53, 431–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidelmann, P.K. Review of planetary and satellite theories. Celestial Mech Dyn Astr 56, 1–12 (1993). https://doi.org/10.1007/BF00699715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00699715

Key words

Navigation