Marine Biology

, Volume 118, Issue 1, pp 17–24 | Cite as

Biological and oceanographic insights from larval labrid (Pisces: Labridae) identification using mtDNA sequences

  • J. A. Hare
  • R. K. Cowen
  • J. P. Zehr
  • F. Juanes
  • K. H. Day


Polymerase chain reaction and direct comparison of mitochondrial DNA sequences from a cytochrome b gene fragment were used to identify two morphologically distinct larval types ofXyrichtys, a genus of tropical wrasse (Pisces: Labridae). Both larval types were collected during ichthyoplankton surveys on the Middle Atlantic Bight shelf in the summer of 1988. DNA sequence comparisons indicated that both types were larvae ofXyrichtys novacula (Linnaeus). Back-calculated birthdate distributions for those larvae collected on the Middle Atlantic Bight shelf demonstrated that the two larval types formed two distinct cohorts indicating a biological difference. The two distinct larval types may be a consequence of an ecophenotypic effect, or they may represent offspring from genetically distinct populations. These results emphasize that important biological and oceanographic information can be gained through the use of the polymerase chain reaction and DNA sequencing for larval identificaiton.


Polymerase Chain Reaction Sequence Comparison Gene Fragment Distinct Population Biological Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able, K. (1992). Checklist of New Jersey saltwater fishes. Bull. N. J. Acad. Sci. 37:1–11Google Scholar
  2. Bartlett, S. E., Davidson, W. S. (1991). Identification ofThunnus tuna species by the polymerase chain reaction and direct sequence analysis of their mitochondrial cytochrome b genes. Can J. Fish. aquat. Sciences 48:309–317Google Scholar
  3. Blot, J. (1980). La faune ichthylogique des gisements du Monte Bolca (Province de Vérone, Italie). Catalogue systématique présentant l'état actuel des recherches concernant cette faune. Bull. Mus. natn. Hist nat., Paris (Ser. 4) 2:339–396Google Scholar
  4. Brown, W. M., Prager, E. M., Wang, A., Wilson, A. C. (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. molec. Evolut. 18:225–239Google Scholar
  5. Carr, S. M., Marshall, H. D. (1991). Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can J. Fish. aquat. Sciences 48:48–52Google Scholar
  6. Carroll, R. L. (1987). Vertebrate paleontology and evolution. Freeman, New YorkGoogle Scholar
  7. Choat, J. H., Bellwood, D. R. (1991) Reef fishes: their history and evolution. In: Sale, P. F. (ed.) The ecology of coral reef fish. Academic Press, San Diego, p. 39–66Google Scholar
  8. Cowen, R. K. (1985). Large scale pattern of recruitment by the labrid,Semicossyphus pulcher: causes and implications. J. mar. Res. 43:719–742Google Scholar
  9. Fahay, M. P. (1983). Guide to the early stages of marine fishes occurring in the western North Atlantic Ocean, Cape Hatteras to the southern Scotian Shelf. J. N. W. Atlant. Fishery Sci. 4:1–423Google Scholar
  10. Fahay, M. P. (1989) The ontogeny ofSteindachneria argentea Goode and Bean with comments on its relationship. In: Cohen, D. M. (ed.) Papers on the systematics of Gadiform fishes. Bull. nat. Hist. Mus. Los Ang. Cty., p. 143–158Google Scholar
  11. Finnerty, J. R., Block, B. A. (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Molec. mar. Biol. Biotech. 1:206–214Google Scholar
  12. Hare, J. A., Cowen, R. K. (1991) Expatriation ofXyrichtys novacula (Pisces: Labridae) larvae: evidence of rapid cross-slope exchange. J. mar. Res. 49:801–823Google Scholar
  13. Hjort, J. (1914). Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer. 20:1–228Google Scholar
  14. Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., Wilson, A. C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. natn. Acad. Scie. U.S.A. 86: 6196–6200Google Scholar
  15. Leis, J. M. (1982) Hawaiian creediid fishes (Crystallodytes cookei andLimnichthys donaldsoni): development of eggs and larvae and use of pelagic eggs to trace coastal water movements. Bull. mar. Sci. 32:166–180Google Scholar
  16. Leis, J. M., Rennis, D. M. (1983). The larvae of Indo-Pacific coral reef fishes. New South Wales University Press, KensingtonGoogle Scholar
  17. Leis, J. M., Trnski, T. (1989). The larvae Indo-Pacific shorefishes. New South Wales University Press, KensingtonGoogle Scholar
  18. Matarese, A. C., Kendall, A. W., Blood, D. M., Vinter, B. M. (1989). Laboratory guide to early life history stages of Northeast Pacific fishes. NOAA tech. Rep. U. S. Dep. Commerce NMFS 80Google Scholar
  19. McVeigh, H. P., Bartlett, S. E., Davidson, W. S. (1991). Polymerase chain reaction/direct sequence analysis of the cytochrome b gene inSalmo salar. Aquaculture, Amsterdam 95:225–233Google Scholar
  20. Meyer, A., Kocher, T. D., Basasibwaki, P., Wilson, A. C. (1990). Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, Lond. 347:550–553Google Scholar
  21. Morgan, S. G., (1989). Adaptive significance of spination in estuarine crab zoeae. Ecology 70:464–482Google Scholar
  22. Moritz, C., Dowling, T. E., Brown, W. M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. A. Rev. Ecol. Syst. 18:269–292Google Scholar
  23. Moser, H. G., Ahlstrom, E. H. (1970). Development of laternfishes (Family Myctophidae) in the California Current. Part I. Species with narrow-eyed larvae. Bull. nat. Hist. Mus. Los Ang. Cty. 7: 1–145Google Scholar
  24. Moser, H. G., Hichards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W., Richardson, S. W. (eds.) (1984) Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence KansasGoogle Scholar
  25. Mountain, D. G., Pastuszak, G. M., Busch, D. A. (1989). Slope water intrusions to the Great South channel during autumn, 1977–85. J. N. W. Atlant. Fishery Sci. 9:97–102Google Scholar
  26. Normark, B. B., McCune, A. R., Harrison, R. G. (1991). Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Molec. Biol. Evolut 8:819–834Google Scholar
  27. Patterson, C. (1993). An overview of the early fossil record of acanthomorphs. Bull. mar. Sci. 52:29–59Google Scholar
  28. Pleyte, K. A., Duncan, S. D., Phillips, R. B. (1992). Evolutionary relationships of the salmonid fish genusSalvelinus inferred from DNA sequences of the First Internal Transcribed Spacer (ITS 1) of ribosomal DNA. Molec. Phylogen. Evolut. 1:223–230Google Scholar
  29. Randall, J. E. (1965). A review of the razorfish genusHemipteronotus (Labridae) of the Atlantic Ocean. Copeia 1965:487–501Google Scholar
  30. Randall, J. E., (1983). Caribbean reef fishes. Tropical Fish Hobbyist Publications, Neptune CityGoogle Scholar
  31. Richards, W. J. (1990). List of the fishes of the western central Atlantic and the status of early life stage information. NOAA tech. Memo. U. S. Dep. Commerce NMFS-SEFC-267Google Scholar
  32. Roughgarden, J., Gaines, S., Possingham, H. (1988). Recruitment dynamics in complex life cycles. Science, N. Y. 241:1460–1466Google Scholar
  33. Saiki, R. K., Gelflan, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., Ehrlich, H. A (1988). Primer-directed enzyme amplification of DNA with a thermostable DNA polymerase. Science, N. Y. 239:478–491Google Scholar
  34. Shedlock, A. M., Parker, J. D., Crispin, D. A., Pietsch, T. W., Burmer, G. C. (1992). Evolution of the salmonid mitochondrial control region. Molec. Phylogen. Evolut. 1:179–192Google Scholar
  35. Sokal, R. R., Rohlf, F. J. (1981). Biometry, 2edn. W. H. Freeman and Company, New YorkGoogle Scholar
  36. Strathmann, R. R., Fenaux, L., Strathmann, M. F. (1992). Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution, Lawrence, Kansas 46:972–986Google Scholar
  37. Strumbauer, C., Meyer, A. (1992). Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, Lond. 358:578–581Google Scholar
  38. Swofford, D. L. (1990) PAUP: Phylogenetic Analysis Using Parsimony, version 3.0s. Computer program distributed by the Illinois Natural History Museum, Champaign, IllinoisGoogle Scholar
  39. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25:1–45Google Scholar
  40. Victor, B. C. (1986a). Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol. Monogr. 56: 145–160Google Scholar
  41. Victor, B. C. (1986b). Duration of the pelagic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90:317–326Google Scholar
  42. Walford, L. A. (1938). Effect of currents of distribution and survival of the eggs and larvae of the haddock (Melanogrammus aeglefinis) on Georges Bank. Bull. Bur. Fish. Wash. 49:1–73Google Scholar
  43. Weihs, D., Moser, H. G. (1981). Stalked eyes as an adaptation towards more efficient foraging in marine fish larvae. Bull. mar. Sci. 31:31–36Google Scholar
  44. Yoshioka, P. M. (1986). Chaos and recruitment in the bryozoan,Membranipora membranacea. Bull. mar. Sci. 39:408–417Google Scholar
  45. Zehr, J. P., McReynolds, L. A. (1989). Use of degenerate oligonucleotides for amplification of thenifH gene from the marine cyanobacteriumTrichodesmiun thiebautii. Appl. envirl Microbiol. 55:2522–2526Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. A. Hare
    • 1
  • R. K. Cowen
    • 1
  • J. P. Zehr
    • 1
  • F. Juanes
    • 1
  • K. H. Day
    • 2
  1. 1.Marine Sciences Research CenterState University of New York at Stony BrookStony BrookUSA
  2. 2.Department of MedicineUniversity of VirginiaCharlottsvilleUSA

Personalised recommendations