Advertisement

Marine Biology

, Volume 118, Issue 1, pp 1–5 | Cite as

Ontogenetic change in the diet ofAplodactylus punctatus (Pisces: Aplodactylidae): an ecophysiological explanation

  • A. G. Benavides
  • J. M. Cancino
  • F. P. Ojeda
Article

Abstract

Aplodactylus punctatus is a temperate berbivorous fish that changes from an omnivorous to a herbivorous diet and increases its ability ot assimilate algae as it grows. To investigate whether this dietary shift is related to size-specific differences in energetic demands imposed by metabolism and the amount of assimilated energy, oxygen consumption (\(V_{O_2 }\)) was determined experimentally in 12 specimens ranging in size from 62 to 545 g.\(V_{O_2 }\) increased allometrically with body size from 8.41 to 55.95 mg O2 individual-1 h-1. Individual energetic requirements were 2.8 to 33.7 kJ d-1. The assimilated energy was estimated, taking into consideration: (1) the energetic value of the most important alga in the diet (Lessonia trabeculata); (2) size-specific differences in assimilation rates for fish fed on this alga; (3) size-specific differences in throughput time and in the amount of food in a full gut. Comparison of the energy required and the assimilated energy revealed that fishes of < 22 to 29 cm total length had a negative energetic balance when consuming algae exclusively. This may explain the reliance of smallA. punctatus on more easily-digested invertebrates. The largest individuals can meet their energetic demands by consuming algae alone, apparently because of their higher assimilation capability. InA. punctatus, changing energetic requirements and capacities for algal assimilation may be responsible for the observed ontogenetic change in diet.

Keywords

Assimilation Assimilation Rate Ontogenetic Change Dietary Shift Energetic Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J. D., Burchmore, J. J., Pollard, D. A. (1980). The food and feeding habits of the rock blackfishGirella elevata Macleay (Pisces: Girellidae), from the Sydney region, New South Wales. Aust. Zool. 20: 391–405Google Scholar
  2. Benavides, A. G. (1990). Variación ontogenética de la capacidad para asimilar algas deAplodactylus punctatus (Pisces: Aplodactylidae). M. Sc. thesis. Universidad de Chile, Santiago, ChileGoogle Scholar
  3. Benavides, A. G., Bozinovic, F., Cancino, J. M., Yates, L. (1986). Asimilación de algas por dos peces del litoral chileno:Syciases sanguineus (Gobiesocidae)y Aplodactylus punctatus (Aplodactylidae). Medio ambiente 8: 21–26Google Scholar
  4. Benavides, A. G., Cancino, J. M., Ojeda, F. P. (1994). Ontogenetic changes in gut dimensions and macroalgal digestibility in the marine herbivorous fish,Aplodactylus punctatus. Funct. Ecol. (in press)Google Scholar
  5. Brett, J. R., Groves, T. D. (1979). Physiological energetics. In: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.) Fish physiology. Vol. VIII. Bioenergetics and growth. Academic Press Inc., New York, p. 252–279Google Scholar
  6. Brey, T., Rumhor, H., Ankar, S. (1988). Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. J. exp. mar. Biol. Ecol 117: 271–278Google Scholar
  7. Chirichigno, N. (1974). Clave para identificar los peces marinos del Perú. Instituto del Mar del Perú, Callao, Perú (Informe No. 4)Google Scholar
  8. Demment, M. W., Van Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125: 641–672Google Scholar
  9. Edwards, R. R. C., Blaxter, J. H. S., Gopalan, U. K., Mathew, C. V., Finlayson, D. M. (1971). Feeding, metabolism and growth of tropical flatfish. J. exp. mar. Biol. Ecol. 6: 279–300Google Scholar
  10. Edwards, R. R. C., Finlayson, V., Steele, J. H. (1969). The ecology of o-group plaice and common dabs in Lockewe. II. Experimental studies of metabolism. J. exp. mar. Biol. Ecol. 3: 1–17Google Scholar
  11. Edwards, R. R. C., Finlayson, V., Steele, J. H. (1972). An experimental study of the oxygen consumption, growth and metabolism of the cod (Gadus morua L.). J. exp. mar. Biol. Ecol. 8: 294–309Google Scholar
  12. Edwards, T. W., Horn, M. H. (1982). Assimilation efficiency of a temperate-zone intertidal fish (Cebidichthys violaceus) feds diets of macroalgae. Mar. Biol. 67: 247–253Google Scholar
  13. Elliott, J. M. (1976a). Energy losses in waste products of brown trout (Salmo trutta L.). J. Anim. Ecol. 45: 561–580Google Scholar
  14. Elliott, J. M. (1976b). The energetics of feeding, metabolism and growth in trout (Salmo trutta) in relation to body weight, water temperature and ration size. J. Anim. Ecol. 45: 923–948Google Scholar
  15. Fuentes, E. R., di Castri, F. (1975). Ensayo de herbivoría experimental en especies deLiolaemus (Iguanidae) chilenos. An. Mus. Hist. nat. Valparaíso 8: 66–75Google Scholar
  16. Hoffer, R. (1988). Morphological adaptations of the digestive tract of tropical cyprinids and cichlids to diet. J. Fish Biol. 33: 299–408Google Scholar
  17. Hoffer, R., Kreedl, G., Koch, F. (1985). An energy budget for an omnivorous cyprinidRutilus rutilus (L.). Hydrobiologia 122: 53–59Google Scholar
  18. Hoffer, R., Newrkla, P. (1983). Determination of gut passage time in tilapia-fry (Oreochromis mossambicus) under laboratory and field conditions. In: Fishelson, L., Yaron, Z. (eds.) Proceedings on International Symposium on Tilapia in Aquaculture. Tel Aviv University, Tel Aviv, Israel, p. 323–327Google Scholar
  19. Horn, M. H. (1989). Biology of marine herbivorous fishes. Oceanogr. mar. Biol. A. Rev. 27: 167–272Google Scholar
  20. Jaksic, F. (1978). A que tamaño se hace herbívora una lagartija. An. Mus. Hist. nat. Valparaíso 11: 113–116Google Scholar
  21. Kleiber, M. (1961). The fire of life: an introduction to animal energetics. Wiley, New YorkGoogle Scholar
  22. Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. A. Rev. Ecol. Syst. 11: 119–161Google Scholar
  23. Miranda, O. (1973). Calendario ictiológico de San Antonio. 3. Biología de la Jerguilla (Aplodactylus punctatus). Biología pesq. Chile 6: 25–43Google Scholar
  24. Mitchell, D. F. (1953). An analysis of stomach contents of California tide pool fishes. Am. Midl. Nat. 49: 862–871Google Scholar
  25. Montgomery, W. L. (1977). Diet and gut morphology in fishes, with special reference to the monkeyface prickleback (Cebidichthys violaceus) (Stichaeidae: Blennioidei). Copeia 1977: 178–182Google Scholar
  26. Montgomery, W. L., Gerking, S. D. (1980). Marine macroalgae as foods for fishes: an evaluation of potential food quality. Envir. Biol. Fish. 5: 143–153Google Scholar
  27. Pandian, T. J., Marian, M. P. (1985). Nitrogen content of food as index of absorption efficiency in fishes. Mar. Biol. 85: 301–311Google Scholar
  28. Paul, A. J., Paul, J. M., Smith, R. L. (1988). Respiratory energy requirements of the codGadus macrocephalus Tilesius relative to body size, food intake and temperature. J. exp. mar. Biol. Ecol. 122: 83–89Google Scholar
  29. Philipson, J. (1981). Bioenergetics options and phylogeny. In: Townsend, C. R., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, London, p. 20–45Google Scholar
  30. Pough, F. H. (1973). Lizard energetics and diet. Ecology 54: 837–844Google Scholar
  31. Rimmer, D. W. (1986). Changes in diet and the development of microbial digestion in juvenile buffalo bream,Kyphosus cornelii. Mar. Biol. 92: 443–448Google Scholar
  32. Rios, C. F. (1979). Balance energético en poblaciones deGalaxias maculatus (Jenyns) (Salmoniformes: Galaxidae). Medio ambiente 4: 24–39Google Scholar
  33. Sibly, R. M. (1981). Strategies of digestion and defecation. In: Townsend, C. R., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, London, p. 109–139Google Scholar
  34. Welch, H. E. (1968). Relationship between assimilation efficiencies and growth efficiencies for a aquatic consumers. Ecology 46: 755–759Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. G. Benavides
    • 1
  • J. M. Cancino
    • 1
  • F. P. Ojeda
    • 1
  1. 1.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations