Contributions to Mineralogy and Petrology

, Volume 113, Issue 4, pp 572–581 | Cite as

Thermodynamic and rheological properties of rhyolite and andesite melts

  • Daniel R. Neuville
  • Philippe Courtial
  • Donald B. Dingwell
  • Pascal Richet
Article

Abstract

The heat capacities of a rhyolite and an andesite glass and liquid have been investigated from relative-enthalpy measurements made between 400 and 1800 K. For the glass phases, the experimental data agree with empirical models of calculation of the heat capacity. For the liquid phases, the agreement is less good owing to strong interactions between alkali metals and aluminum, which are not currently accounted for by empirical heat capacity models. The viscosity of both liquids has been measured from the glass transition to 1800 K. The temperature dependence of the viscosity is quantitatively related to the configurational heat capacity (determined calorimetrically) through the configurational entropy theory of relaxation processes. For both rhyolite and andesite melts, the heat capacity and viscosity do not differ markedly from those obtained by additive modeling from components with mineral compositions.

Keywords

Viscosity Entropy Heat Capacity Glass Transition Alkali Metal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146Google Scholar
  2. Bacon CR (1977) High-temperature heat content and heat capacity of silicate glasses: experimental determination and a model for calculation. Am J Sci 277:109–135Google Scholar
  3. Bockris JO' M, Lowe DC (1954) Viscosity and structure of molten silicates. Proc R Soc London A 226:423–435Google Scholar
  4. Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components Am J Sci 269:169–182Google Scholar
  5. Bottinga Y, Weill DF (1972) The viscosity of magmatic liquids: a model for calculation. Am J Sci 272:438–475Google Scholar
  6. Bowen NL (1928) The evolution of the igneous rocks. Dover Publications Inc, New York (Reprinted 1956)Google Scholar
  7. Carmichael ISE, Nicholls J, Spera FJ, Wood BJ, Nelson SA (1977) High-temperature of silicate liquids: application to the equilibration and ascent of basic magma. Philos Trans R Soc London A 286:373–431Google Scholar
  8. Carron JP (1969) Recherche sur la viscosité et les phénomènes de transport des ions alcalins dans les obsidiennes granitiques. Trav Lab Géol, no3, Ec Norm Supér, ParisGoogle Scholar
  9. Clemens JD, Navrotsky AN (1987) Mixing properties of NaAlSi3O8 melt-H2O: new calorimetric data and some geological implications. J Geol 95:173–186Google Scholar
  10. Cukierman M, Uhlmann DR (1973) Viscosity of liquid anorthite. J Geophys Res 78:4920–4923Google Scholar
  11. Dingwell DB (1989) Effect of fluorine on the viscosity of diopside liquid. Am Mineral 74:333–338Google Scholar
  12. Dingwell DB, Virgo D (1987) The effect of oxidation state on the viscosity of melt in the system Na2O−FeO−Fe2O3−SiO2. Geochim Cosmochim Acta 51:195–205Google Scholar
  13. Hummel W, Arndt J (1985) Variation of viscosity with temperature and composition in the plagioclase system. Contrib Mineral Petrol 90:83–92Google Scholar
  14. Klein LC, Fasano BV, Wu JM (1983) Viscous flow behavior of four iron-containing silicates with alumina, effects of composition and oxidation condition. J Geophys Res 88:A880-A886Google Scholar
  15. Kress VC, Carmichael ISE (1988) The lime-iron-silicate melt system: redox and volume systematics. Geochim Cosmochim Acta 53:2883–2892Google Scholar
  16. Lange RA, Navrotsky A (1992) Heat capacities of Fe2O3-bearing silicate liquids. Contrib Mineral Petrol 110:311–320Google Scholar
  17. Leko BK (1979) Viscosity of vitreous silica. Fiz Khim Stekla 5:258–278Google Scholar
  18. Lejeune AM, Richet P (1991) Rheology of magmas. Terra Abstr 3:445Google Scholar
  19. Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592Google Scholar
  20. Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam New YorkGoogle Scholar
  21. Neuville DR, Richet P (1991) Viscosity and (Ca, Mg) mixing in molten pyroxenes and garnets. Geochim Cosmochim Acta 55:1011–1021Google Scholar
  22. Newman S, Stolper EM, Epstein S (1986) Measurement of water rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Mineral 71:1527–1541Google Scholar
  23. Regnard IR, Chavez-Rivas F, Chappert J (1981) Study of the oxydation states and magnetic properties of iron in volcanic glasses: Lipari and Teotihuacan obsidians. Bull Minéral 104:204–210Google Scholar
  24. Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483Google Scholar
  25. Richet P (1987) Heat capacity of silicate glasses. Chem Geol 62:111–124Google Scholar
  26. Richet P, Bottinga Y (1984a) Glass transitions and thermodynamic properties of amorphous SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochim Cosmochim Acta. 48:453–470Google Scholar
  27. Richet P, Bottinga Y (1984b) Anorthite, andesine, diopside, wollastonite, cordierite and pyrope: thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet Sci Lett 67:415–432Google Scholar
  28. Richet P, Bottinga Y (1985) Heat capacity of aluminum-free liquid silicates. Geochim Cosmochim Acta 49:471–486Google Scholar
  29. Richet P, Bottinga Y (1986) Thermochemical properties of silicate glasses and liquids: a review. Rev Geophys 24:1–25Google Scholar
  30. Richet P, Neuville DR (1992) Thermodynamics of silicate melts: configurational properties. Adv Phys Geochem 10:132–160Google Scholar
  31. Richet P, Bottinga Y, Deniélou L, Petitet JP, Téqui C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658Google Scholar
  32. Richet P, Robie RA, Hemingway BS (1986) Low-temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational entropy theory applied to the viscosity of liquid silicates. Geochim Cosmochim Acta 50:1521–1533Google Scholar
  33. Richet P, Gillet P, Fiquet G (1992) Thermodynamic properties of minerals: macroscopic and microscopic approaches. Adv Phys Geochem 10:98–131Google Scholar
  34. Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700°C to 900°C. J Geophys Res 68:6337–6343Google Scholar
  35. Stebbins JF, Weill DF, Carmichael ISE, Moret LK (1982) High-temperature heat contents and heat capacities of liquids and glasses in the system NaAlSi3O8−CaAl2Si2O8. Contrib Mineral Petrol 80:276–284Google Scholar
  36. Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicates liquids and glasses. Contrib Mineral Petrol 86:131–148Google Scholar
  37. Taylor TD, Rindone GE (1970) Properties of soda aluminosilicate glasses: V low-temperature viscosities. J Am Ceram Soc 53:692–695Google Scholar
  38. Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and aluminosilicates. Geochim Cosmochim Acta 46:1061–1071Google Scholar
  39. Webb SL, Dingwell DB (1990a) Non-newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt and nepheline J Geophys Res 95:15695–16701Google Scholar
  40. Webb SL, Dingwell DB (1990b) The onset of non-newtonian rheology of silicate melts. Phys Chem Minerals 17:125–132Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Daniel R. Neuville
    • 1
  • Philippe Courtial
    • 1
  • Donald B. Dingwell
    • 2
  • Pascal Richet
    • 1
  1. 1.Institut de Physique du GlobeParis cedex 05France
  2. 2.Bayerische GeoinstitutUniversität BayreuthBayreuthFRG

Personalised recommendations