Journal of comparative physiology

, Volume 91, Issue 3, pp 247–256 | Cite as

Fatty acid metabolism in hibernatingCepaea nemoralis (Mollusca: Pulmonata)

  • D. J. van der Horst
  • R. C. H. M. Oudejans
  • J. A. Meijers
  • G. J. Testerink


  1. 1.

    During hibernation,Cepaea nemoralis is able to synthesize lipids from several potential energy sources, such as glucose, pyruvate, acetate and alanine.

  2. 2.

    Although the rate of lipid biosynthesis is markedly reduced during hibernation, the metabolism of fatty acids and other lipids is not essentially different from that in non-hibernating snails.

  3. 3.

    The physiological significance of hibernation inCepaea is differing fundamentally from that in homeothermic species, and is discussed in relation to the physiology of estivation in other terrestrial snails.



Glucose Lipid Acetate Potential Energy Pyruvate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brand, T., von: Der Jahreszyclus im Stoffbestand der Weinbergschnecke (Helix pomatia). Z. vergl. Physiol.14, 200–264 (1931)Google Scholar
  2. Brand, T., von: Occurrence of anaerobiosis among invertebrates. Biodynamica4, 185–328 (1944)Google Scholar
  3. Burdick, D. J., Kardos, E. H.: The age structure of fall, winter, and spring populations ofCulex tarsalis in Kern County, California. Arm. ent. Soc. Amer.56, 527–535 (1963)Google Scholar
  4. Cullen, J. Phillips, M. C., Shipley, G. G.: The effects of temperature on the composition and physical properties of the lipids ofPseudomonas fluorrscens. Biochem. J.125, 733–742 (1971)Google Scholar
  5. Dessauer, H. C.: Hibernation of the lizard,Anolis carolinensis. Proc. Soc. exp. Biol. (N. Y.)82, 351–353 (1953)Google Scholar
  6. Farkas, T., Herodek, S.: The effect of environmental temperature on the fatty acid composition of crustacean plankton. J. Lipid Res.5, 369–373 (1964)Google Scholar
  7. Fox, C. F.: The structure of cell membranes. Sci. Amer.226, 31–38 (1972)Google Scholar
  8. Freeman, C. P., West, D.: Complete separation of lipid classes on a single thin layer plate. J. Lipid Res.7, 324–327 (1966)Google Scholar
  9. Hochachka, P. W., Somero, G. N.: Strategies of biochemical adaptation. Philadelphia: W. B. Saunders Company 1973Google Scholar
  10. Horne, F. R.: The utilization of foodstuffs and urea production by a land snail during estivation. Biol. Bull.144, 321–330 (1973)Google Scholar
  11. Horst, D. J. van der: Investigation of the synthesis and distribution of fatty acids in the lipids of the snailCepaea nemoralis (L.). I. The fatty acid composition of the total lipids. Neth. J. Zool.20, 433–444 (1970)Google Scholar
  12. Horst, D. J. van der: Biosynthesis of saturated and unsaturated fatty acids in the pulmonate land snailCepaea nemoralis (L.). Comp. Biochem. Physiol. B46, 551–560 (1973)Google Scholar
  13. Horst, D. J. van der:In vivo biosynthesis of fatty acids in the pulmonate land snailCepaea nemoralis (L.) under anoxic conditions. Comp. Biochem. Physiol. B47, 181–187 (1974)Google Scholar
  14. Horst, D. J. van der, Kingma, F. J., Oudejans, R. C. H. M.: Phospholipids of the pulmonate land snailCepaea nemoralis (L.). Lipids8, 759–765 (1973a)Google Scholar
  15. Horst, D. J. van der, Oudejans, R. C. H. M., Plug, A. G., Sluis, I. van der: Fatty acids of the female horseshoe crabXiphosura (Limulus) polyphemus. Mar. Biol.20, 291–296 (1973b)Google Scholar
  16. Horst, D. J., van der, Voogt, P. A.: Biosynthesis and composition of sterols and sterol esters in the land snailCepaea nemoralis (L.) (Gastropoda, Pulmonata, Stylommatophora). Comp. Biochem. Physiol. B42, 1–6 (1972)Google Scholar
  17. Horst, D. J. van der, Zandee, D. I.: Invariability of the composition of fatty acids and other lipids in the pulmonate land snailCepaea nemoralis (L.) during an annual cycle. J. comp. Physiol.85, 317–326 (1973)Google Scholar
  18. Jeffay, H., Alvarez, J.: Liquid scintillation counting of carbon-14. Use of ethanolamine-ethylene glycol monomethyl ether-toluene. Analyt. Chem.33, 612–615 (1961)Google Scholar
  19. Johnston, P. V., Roots, B. I.: Brain lipid fatty acids and temperature acclimation. Comp. Biochem. Physiol.11, 303–309 (1964)Google Scholar
  20. Kayser, C.: The physiology of natural hibernation. International series of monographs on pure and applied biology, vol. 8, p. 1–325. Oxford: Pergamon Press 1961Google Scholar
  21. Knipprath, W. G., Mead, J. F.: The effect of the environmental temperature on the fatty acid composition and on thein vivo incorporation of 1-14C-acetate in goldfish (Carassius auratus L.). Lipids3, 121–128 (1968)Google Scholar
  22. Ladbrooke, B. D., Chapman, D.: Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem. Phys. Lip.3, 304–367 (1969)Google Scholar
  23. Lamotte, M.: Recherches sur la structure génétique des populations naturelles deCepaea nemoralis (L.). Bull. Biol. France35, Suppl. 1–239 (1951)Google Scholar
  24. Lyons, J. M., Raison, J. K.: A temperature-induced transition in mitochondrial oxidation: contrasts between cold and warm-blooded animals. Comp. Biochem. Physiol.37, 405–411 (1970)Google Scholar
  25. Moberly, W. R.: Hibernation in the desert iguana,Dipsosaurus dorsalis. Physiol. Zool.36, 152–160 (1963)Google Scholar
  26. Oudejans, R. C. H. M., Horst, D. J. van der: Aerobic-anaerobic biosynthesis of fatty acids and other lipids from glycolytic intermediates in the pulmonate land snailCepaea nemoralis (L.). Comp. Biochem. Physiol. B47, 139–147 (1974a)Google Scholar
  27. Oudejans, R. C. H. M., Horst, D. J. van der: Effect of excessive fatty acid ingestion on the composition of neutral lipids and phospholipids of the snailHelix pomatia L. Biochim. biophys. Acta (Amst.) (1974b, in press)Google Scholar
  28. Oudejans, R. C. H. M., Horst, D. J. van der, Dongen, J. P. C. M. van: Isolation and identification of cyclopropane fatty acids from the millipedeGraphidostreptus tumuliporus (Karsch) (Myriapoda: Diplopoda). Biochemistry10, 4938–4941 (1971a)Google Scholar
  29. Oudejans, R. C. H. M., Horst, D. J. van der, Zandee, D. I.: Fatty acid composition of the millipedeGraphidostreptus tumuliporus (Karsch) (Myriapoda:Diplopoda). Comp. Biochem. Physiol. B40, 1–6 (1971b)Google Scholar
  30. Potter, G. E., Glass, H. B.: A study of respiration in hibernating horned lizards,Phrynosoma cornutum. Copeia3, 128–131 (1931)Google Scholar
  31. Raison, J. K., Lyons, J. M.: Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature. Proc. nat. Acad. Sci. (Wash.)68, 2092–2094 (1971)Google Scholar
  32. Schaefer, C. H., Washino, R. K.: Changes in the composition of lipids and fatty acids in adultCulex tarsalis andAnopheles freeborni during the overwintering period. J. Insect Physiol.15, 395–402 (1969)Google Scholar
  33. Thiele, O. W.: Die Lipide der Weinbergschnecke (Helix pomatia L.). Jahreszeitliche Veränderungen in der Zusammensetzung der Lipide. Z. vergl. Physiol.42, 484–491 (1959)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. J. van der Horst
    • 1
  • R. C. H. M. Oudejans
    • 1
  • J. A. Meijers
    • 1
  • G. J. Testerink
    • 1
  1. 1.Laboratory of Chemical Animal PhysiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations