Skip to main content
Log in

Summary

Tryptophan and quinolinic acid, inhibitors of gluconeogenesis, were used to block the removal of lactate by the liver in order to investigate the involvement of the Cori cycle in oxygen debt. Five male, mongrel dogs were run on a treadmill at 4 mph with a 20 percent grade for 19 min. The mean exercise\(\dot V_{O_2 }\) was 80.67±3.11 ml/kg/min for the control tests while peak arterial lactate values ranged from 3.83 to 4.98 mM/l. When removal of lactate by the liver was blocked, oxygen debt showed a mean reduction of 44 percent. Moreover, oxygen consumption during the last minute of exercise was reduced by 11 percent.

Fasting (72 h) was used in 1 dog to prevent the accumulation of lactate during exercise. This procedure reduced oxygen debt to the same level as when the removal of lactate by the liver was blocked with tryptophan and quinolinic acid.

The data show that the lactacid as well as the alactacid component is involved in oxygen debt when lactate is being removed by the liver during the recovery period following exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Alpert, N. R., Root, W. S.: Relationship between excess respiratory metabolism and utilization of intravenously infused sodium racemic laotate and L(-) lactate. Amer. J. Physiol.177, 455–462 (1954).

    Google Scholar 

  2. Carlsten, A., Hallgren, B., Jagenburg, B., Svanborg, A., Werko, L.: Myocardial metabolism of glucose, lactic acid, amino acids, and fatty acids in healthy human individuals at rest and at different work loads. Scand. J. clin. Lab. Invest.13, 418–428 (1961).

    Google Scholar 

  3. Consolazio, C. F., Johnson, R. E., Pecora, L. J.: Physiological Measurements of Metabolic Functions in Man, p. 8. New York: McGraw-Hill 1963.

    Google Scholar 

  4. Dukes, H. H.: The Physiology of Domestic Animals, p. 638. Ithica (N.Y.): Comstock 1955.

    Google Scholar 

  5. Eggleton, M. G., Evans, C. L.: The lactic acid content of the blood after muscular conttracion under experimental conditions. J.Physiol.(Lond.)70, 269–293 (1930).

    Google Scholar 

  6. Flock, E. V., Ingle, D. J., Bollman, J. L.: Formation of lactic acid, an initial process in working muscle. J. biol. Chem.129, 99–110 (1939).

    Google Scholar 

  7. Foss, M. L., Barnard, R. J.: A vest to protect exposed chronic implants in dogs. Lab. Animal Care19, 113–114 (1969).

    Google Scholar 

  8. Foster, D. O., Lardy, H. A., Ray, P. D., Johnston, J. B.: Alteration of rat liver phosphoenolpyruvate carboxykinase activity by L-tryptophan in vivo and metals in vitro. Biochemistry6, 2120–2128 (1967).

    Google Scholar 

  9. —, Ray, P. D., Lardy, H. A.: A paradoxical in vivo effect of L-tryptophan on the phosphoenolpyruvate carboxykinase of rat liver. Biochemistry5, 563–569 (1966).

    Google Scholar 

  10. Freyschuss, U., Strandell, T.: Limb circulation during arm and leg exercise in supine position. J. appl. Physiol.23, 163–170 (1967).

    Google Scholar 

  11. Gollnick, P. D., Ianuzzo, C. D.: Colonic temperature response of rats during exercise. J. appl. Physiol.24, 747–750 (1968).

    Google Scholar 

  12. Harris, P., Bateman, M., Gloster, J.: The regional metabolism of lactate and pyruvate during exercise in patients with rheumatic heart disease. Clin. Sci.23, 545–560 (1962).

    Google Scholar 

  13. Hill, A. V., Long, C. N. H., Lupton, H.: Muscular exercise, lactic acid, and the supply and utilization of oxygen. Part I. Introduction. Proc. roy. Soc. B96, 438–444 (1924).

    Google Scholar 

  14. — — —: Muscular exercise, lactic acid, and the supply and utilization of oxygen. Part VI. The oxygen debt at the end of exercise. Proc. roy. Soc. B97, 127–137 (1924).

    Google Scholar 

  15. Huckabee, W. E.: Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O2-debt. J. clin. Invest.37, 255–263 (1958).

    Google Scholar 

  16. Issekutz, B., Jr., Miller, H. I., Paul, P., Rodahl, K.: Effect of lactic acid on free fatty acids and glucose oxidation in dogs. Amer. J. Physiol.209, 1137–1144 (1965).

    Google Scholar 

  17. — —, Rodahl, K.: Lipid and carbohydrate metabolism during exercise. Fed. Proc.25, 1415–1420 (1966).

    Google Scholar 

  18. Jöbsis, F. F., Duffield, J. C.: Oxidative and glycolytic recovery metabolism in muscle. J. gen. Physiol.50, 1009–1047 (1967).

    Google Scholar 

  19. Jonsson, A., Madison, L. L.: The role of the kidney in blood glucose homeostasis during prolonged starvation. J. clin. Invest.47, 52a (1968).

    Google Scholar 

  20. Kayne, H. L., Alpert, N. R.: Oxygen consumption following exercise in the anesthetized dog. Amer. J. Physiol.206, 51–56 (1964).

    Google Scholar 

  21. Keul, J., Doll, E., Steim, H., Fleer, U., Reindell, H.: Über den Stoffwechsel des menschlichen Herzens. III. Der oxydative Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pflügers Arch. ges. Physiol.282, 43–53 (1965).

    Google Scholar 

  22. Krebs, H. A.: Gluconeogenesis. Proc. roy. Soc. B159, 545–564 (1964).

    Google Scholar 

  23. —, Bennett, D. A. H., de Gasquet, P., Gascoyne, T., Yoshida, T.: Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidneycortex slices. Biochem. J.86, 22–27 (1963).

    Google Scholar 

  24. —, Dierks, C., Gascoyne, T.: Carbohydrate synthesis from lactate in pigeonliver homogenate. Biochem. J.93, 112–121 (1964).

    Google Scholar 

  25. Levy, M. N.: Uptake of lactate and pyruvate by intact kidney of the dog. Amer. J. Physiol.202, 302–308 (1962).

    Google Scholar 

  26. Marbach, E. P., Weil, M. H.: Rapid enzymatic measurement of blood lactate and pyruvate. Clin. Chem.13, 314–325 (1967).

    Google Scholar 

  27. Margaria, R., Edwards, H. T., Dill, D. B.: The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Amer. J. Physiol.106, 689–715 (1933).

    Google Scholar 

  28. Meyerhof, O.: Die Energieumwandlungen im Muskel. III. Kohlenhydrat- und Milchsäureumsatz im Froschmuskel. Pflügers Arch. ges. Physiol.185, 11–32 (1920).

    Google Scholar 

  29. —: Die Energieumwandlungen im Muskel. IV. Über die Milchsäurebildung in der zerschnittenen Muskulatur. Pflügers Arch. ges. Physiol.188, 114–160 (1921).

    Google Scholar 

  30. Newsholme, E. A., Grevers, W.: Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitamins Hormones20, 1–87 (1967).

    Google Scholar 

  31. Paul, P., Issekutz, B., Miller, H. I.: Interrelationship of free fatty acids and glucose metabolism in the dog. Amer. J. Physiol.211, 1313–1320 (1966).

    Google Scholar 

  32. Racker, E.: Mechanisms in Bioenergetics, p. 253. New York: Academic Press 1965.

    Google Scholar 

  33. Ray, P. D., Foster, D. O., Lardy, H. A.: Paths of carbon in gluconeogenesis and lipogenesis at the level of phosphoenolpyruvate formation. J. biol. Chem.241, 3904–3908 (1966).

    Google Scholar 

  34. Ross, B. D., Hems, R., Krebs, H. A.: The rate of gluooneogenesis from various precursors in the perfused rat liver. Biochem. J.102, 942–951 (1967).

    Google Scholar 

  35. Rowell, L. B., Brengelmann, G. L., Blackmon, J. R., Twiss, R. D., Kusumi, F.: Splanchnic blood flow and metabolism in heat-stressed man. J. appl. Physiol.24, 475–484 (1968).

    Google Scholar 

  36. —, Kraning II, K. K., Evans, T. O., Kennedy, J. W., Blackmon, J. R., Kusumi, F.: Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J. appl. Physiol.21, 1773–1783 (1966).

    Google Scholar 

  37. Sacks, J., Sacks, W. C.: Carbohydrate changes during recovery from muscular contraction. Amer. J. Physiol.112, 565–572 (1935).

    Google Scholar 

  38. — —, Shaw, J. R.: Carbohydrate and phosphorus changes in prolonged muscular contractions. Amer. J. Physiol.118, 232–240 (1937).

    Google Scholar 

  39. Utter, M. P., Keech, D. B.: Pyruvate carboxylase. II. Properties. J. biol. Chem.238, 2609–2614 (1963).

    Google Scholar 

  40. Veneziale, C. M., Walter, P., Kneer, N., Lardy, H. A.: Influence of L-tryptophan and its metabolites on gluconeogenesis in the isolated, perfused liver. Biochemistry6, 2129–2138 (1967).

    Google Scholar 

  41. Young, D. R.: Effect of food deprivation on treadmill running in dogs. J. appl. Physiol.14, 1018–1022 (1959).

    Google Scholar 

  42. —, Mosher, R., Erve, P., Spector, H.: Energy metabolism and gas exchange during treadmill running in dogs. J. appl. Physiol.14, 834–838 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, R.J., Foss, M.L. & Tipton, C.M. Oxygen debt: Involvement of the Cori cycle. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 28, 105–119 (1970). https://doi.org/10.1007/BF00698050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698050

Key-Words

Navigation