Applied Physics B

, Volume 36, Issue 1, pp 33–40 | Cite as

Axially blown SF6-arcs around current zero

  • H. P. Graf
  • H. P. Meili
  • E. Fischer
  • H. J. Schoetzau
Contributed Papers


The increase of the interrupting capability of modern SF6 puffer breakers demands a better knowledge of the interaction of the arc with the gas flow. During the current interruption in an SF6 breaker the arc temperature in the stagnation zone is of decisive importance. The temporal evolution of the arc temperature and the diameter is studied by means of interferometry and emission spectroscopy. Experimental results are presented which show the influence of the current slope and the gas pressure on the arc decay. These results are compared with a theoretical model describing the temperature decay after current interruption.


52 42.80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.E. Kinsinger: IEEE-PES, Power Eng. Soc. Winter Meeting, New York (1974) Paper No. T74182-2Google Scholar
  2. 2.
    E. Schade, K. Ragaller, W. Egli, K.P. Brand, L. Niemeyer: IEEE Trans. PS-10, 141 (1982)Google Scholar
  3. 3.
    W. Tiemann: IEEE Trans. PS-8, 368 (1980)Google Scholar
  4. 4.
    R. Thaler, H. Wyss: Sprecher News, Techn. Rev. No. 3, 3 (1975)Google Scholar
  5. 5.
    G.R. Jones: In:Current Interruption in High-Voltage Networks, ed. by K. Ragaller (Plenum Press, New York 1978) pp. 95–117Google Scholar
  6. 6.
    D. Leseberg: Diss. Fakultaet Elektrotechnik, RWTH-Aachen (1982)Google Scholar
  7. 7.
    H.P. Graf, H.P. Meili, H.J. Schoetzau, Ch. Sturzenegger: Helv. Phys. Acta55, 590 (1982)Google Scholar
  8. 8.
    Ch. Sturzenegger, R. Reinhardt, H.J. Schoetzau: IEEE Trans. PS-8, 384 (1980)Google Scholar
  9. 9.
    R. Plank: Kältetechnik13, 428 (1961)Google Scholar
  10. 10.
    N.V. Holmgren, D.R. Martin: IEEE Trans. PAS-100, 4876 (1981)Google Scholar
  11. 11.
    N. Brates, D.M. Benenson: IEEE-PES, Power Eng. Soc. Winter Meeting, New York (1983) Paper No. 83 WM 131-0Google Scholar
  12. 12.
    H.W. Drawin, P. Felenbok: InData for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris 1965)Google Scholar
  13. 13.
    C.H. Corliss: J. Res.74A, 781 (1970)Google Scholar
  14. 14.
    E. Schulz-Gulde: Z. Physik245, 308 (1971)Google Scholar
  15. 15.
    W.L. Wiese, M.W. Smith, B.M. Glennon: National Standard Reference Data Series NBS4 (1966)Google Scholar
  16. 16.
    L.S. Frost, R.W. Liebermann: Proc. IEEE59, 474 (1971)Google Scholar
  17. 17.
    R.W. Liebermann, J.J. Lowke: J.Q.R.T.16, 253 (1976)Google Scholar
  18. 18.
    W. Tiemann: P72-Verhandlungen der Deutsch. Physik. Gesellsch.4/1982, Frühjahrstagung Würzburg (1982)Google Scholar
  19. 19.
    H.J. Schoetzau, H.P. Graf, H.P. Meili, Ch. Sturzenegger, W. Ruegsegger: Helv. Phys. Acta56, 955 (1983)Google Scholar
  20. 20.
    B.W. Swanson, R.M. Roidt, T.E. Browne, Jr.: IEEE Trans. PAS-89, 2033 (1970)Google Scholar
  21. 21.
    H.G. Thiel: Proc. IEEE59, 508 (1971)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. P. Graf
    • 1
  • H. P. Meili
    • 1
  • E. Fischer
    • 1
  • H. J. Schoetzau
    • 1
  1. 1.Physics LaboratorySprecher Schuh Ltd.AarauSwitzerland

Personalised recommendations