Skip to main content
Log in

Polarised light detection in the bee,Apis mellifera

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The ninth cell in each ommatidium is the only retinula cell that acts as a polarised light detector. The ninth cell is a short retinula cell which is found in the proximal third of the ommatidium. This conclusion is based on the following observations:

  1. (1)

    The most frequently found green sensitive cells have either no or very low sensitivity to polarised light. This is caused by electric coupling of cells with different microvilli orientations. The electric coupling was found to be independent of adaptation state.

  2. (2)

    There are two different types of UV receptors: the more frequently found UV cells also have a distinct spectral sensitivity at longer wavelengths (>450 nm) and a small polarisation sensitivity. A very rarely recorded UV receptor type with no sensitivity to longer wavelengths (>450 nm) has a high polarisation sensitivity (average PS = 5, maximal PS = 9). All recordings of these UV cells were made close to the basement membrane in the region of the 9th cell.

  3. (3)

    The short length of the 9th cell, its position in the proximal third of the ommatidium, and the orientation of the microvilli is theoretically consistent with it having a high polarisation sensitivity.

To find evidence for the mechanisms underlying the integration of polarisation information coming from the 9th cells, we examined the microvilli orientation of these cells in neighbouring ommatidia in different eye regions. While the medio-ventral eye region contains only one population, with microvilli oriented at 45 ° to the vertical, the dorsal and medio-dorsal eye regions contain two populations lying at 120 ° or 60 ° to each other. The pattern of microvilli orientation is a mirror image in both eyes. This pattern enables an unambiguous determination of the polarisation plane in the dorsal and medio-dorsal eye part if there is a comparison of excitation in the 9th cells of neighbouring ommatidia and/or ommatidia in the two eyes sharing the same field of view.

Our conclusions are consistent with v. Frisch's findings on the orientation to polarised light by the worker bee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Stumpf, H.: Das Bienenauge als Analysator für polarisiertes Licht. Z. Naturforsch.5b, 116–122 (1950)

    Google Scholar 

  • Autrum, H., Zwehl, V. von: Die Sehzellen der Insekten als Analysatoren für polarisiertes Licht. Z. vergl. Physiol.46, 1–17 (1962)

    Google Scholar 

  • Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)

    Google Scholar 

  • Baumgärtner, H.: Der Pormensinn und die Sehschärfe der Bienen. Z. vergl. Physiol.7, 56–143 (1928)

    Google Scholar 

  • Burkhardt, D., Wendler, L.: Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungseinrichtung polarisierten Lichtes zu analysieren. Z. vergl. Physiol.43, 687–692 (1960)

    Google Scholar 

  • Butler, R., Horridge, G. A.: The electrophysiology of the retina ofPeriplaneta americana. II. Receptor sensitivity and polarised light sensitivity. J. comp. Physiol.83, 279–288 (1973)

    Google Scholar 

  • Eguchi, E., Waterman, T. H.: Cellular basis for polarised light perception in the spider crabLibinia. Z. Zellforsch.84, 87–101 (1968)

    Google Scholar 

  • Frisch, K. von: The dance language and orientation of bees. Cambridge: Harvard University Press 1967

    Google Scholar 

  • Frisch, K. von, Lindauer, M., Daumer, K.: Über die Wahrnehmung polarisierten Lichtes durch das Bienenauge. Experientia (Basel)16, 289–302 (1960)

    Google Scholar 

  • Goldsmith, T. H.: Fine structure of the retinulae in the compound eye of the honeybee. J. Cell Biol.14, 489–494 (1962)

    Google Scholar 

  • Gribakin, F. G.: Cellular basis of colour vision in the honeybee. Nature (Lond.)223, 639–641 (1969)

    Google Scholar 

  • Gribakin, F. G.: The distribution of the long wave photoreceptors in the compound eye of the honeybee as revealed by selective osmic staining. Vision Res.12, 1225–1230 (1970)

    Google Scholar 

  • Grundler, O. J.: Elektronenmikroskopische Untersuchungen am Auge vonApis mellifera. Zulassungsarbeit zur wiss. Prüfung. Universität Würzburg (1972)

  • Grundler, O. J.: Morphologische Untersuchungen am Bienenauge nach Bestrahlung mit Licht verschiedener Wellenlängen. Cytobiol.7, 105–110 (1973)

    Google Scholar 

  • Horridge, G. A.: Unit studies on the retina of the dragonflies. Z. vergl. Physiol.62, 1–37 (1969)

    Google Scholar 

  • Kaneko, A.: Physiological and morphological identification of horizontal bipolar and amacrine cells in goldfish. J. Physiol. (Lond.)207, 623–633 (1970)

    Google Scholar 

  • Karnovsky, M.: A formaldehyde-glutaraldehyde fixture of high osmolality for use in electron microscopy. J. Cell. Biol27, 137–138A (1965)

    Google Scholar 

  • Kirschfeld, K.: Optics of the compound eye. Rendiconti S.I.F.43, 144–166 (1969)

    Google Scholar 

  • Kirschfeld, K.: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch.27 b, 578–579 (1972)

    Google Scholar 

  • Kirschfeld, K.: Optomotor responses of the bee to moving “polarisation patterns”. Z. Naturforsch.28 c, 329–338 (1973)

    Google Scholar 

  • Langer, H.: Spektrophotometrische Untersuchungen der Absorptionseigenschaften einzelner Rhabdomere im Facettenauge. Zool. Anz., Suppl.29, 329–338 (1965)

    Google Scholar 

  • Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments. In: The functional organization of the compound eye (ed. C. G. Bernhard), p. 145–150. London: Pergamon Press 1966

    Google Scholar 

  • Laughlin, S.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)

    Google Scholar 

  • Laughlin, S. B., Horridge, G. A.: Angular sensitivity of the retinular cells of dark adapted worker bee. Z. vergl. Physiol.24, 329–339 (1971)

    Google Scholar 

  • Menzel, R.: Spectral response of moving detection and sustaining fibres in the optic lobe of the bee. J. comp. Physiol.82, 135–150 (1973)

    Google Scholar 

  • Perrelet, A.: The fine structure of the retinula of the honey bee drone. An electron microscopical study. Z. Zellforsch.108, 530–562 (1970)

    Google Scholar 

  • Phillips, E. F.: Structure and development of the compound eye of the honey bee. Proc. Acad. Nat. Sci. (Philad.)57, 123–157 (1905)

    Google Scholar 

  • Portillo, J. del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktioneilen Aufgabe. Z. vergl. Physiol.23, 100–145 (1936)

    Google Scholar 

  • Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly. Kybernetik6, 149–162 (1969)

    Google Scholar 

  • Shaw, S. R.: Polarised light responses from crab retinula cells. Nature (Lond.)211, 92–93 (1966)

    Google Scholar 

  • Shaw, S. R.: Organisation of the locust retina. Symp. Zool. Soc. Lond. No.23, 135–163 (1968)

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res.9, 999–1029 (1969a)

    Google Scholar 

  • Shaw, S. R.: Sense-cell structure and interspecies comparisons of polarised-Iight absorption in arthropod compound eyes. Vision Res.9, 1031–1040 (1969b)

    Google Scholar 

  • Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects (ed. G. A. Horridge). Oxford: University Press 1973a

    Google Scholar 

  • Snyder, A. W.: Polarisation sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973b)

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol.87, 99–135 (1973)

    Google Scholar 

  • Snyder, A. W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol.84, 59–76 (1973)

    Google Scholar 

  • Snyder, A. W., Pask, C.: Detection of polarisation and direction by the bee rhabdom. J. comp. Physiol.78, 346–355 (1972)

    Google Scholar 

  • Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969)

    Google Scholar 

  • Varela, F. G., Porter, K. R.: Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J. Ultrastruct. Res.29, 236–259 (1969)

    Google Scholar 

  • Walcott, B.: Unit studies on receptor movement in the retina ofLethocerus (Belostomatidae, Hemiptera). Z. vergl. Physiol.74, 17–25 (1971)

    Google Scholar 

  • Zolotov, V., Frantsevich, L.: Orientation of bees by the polarised light of a limited area of the sky. J. comp. Physiol.85, 25–36 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We want to thank Mrs. J. Picker and Miss M. Blakers for careful technical help. We are grateful to Dr. J. Kien and Mr. S. Laughlin for reading the manuscript and many stimulating discussions. One of us (R.M.) would like to thank Prof. G. A. Horridge for his invitation to work in his Department. We thank Prof. K. von Frisch for comments to parts of the discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzel, R., Snyder, A.W. Polarised light detection in the bee,Apis mellifera . J. Comp. Physiol. 88, 247–270 (1974). https://doi.org/10.1007/BF00697958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00697958

Keywords

Navigation