Skip to main content
Log in

MPD arcs as plasma sources for recombination lasers

  • Invited Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study the decay of argon plasmas ejected from a MPD thruster described in a previous paper is investigated. Various parameters, e.g. the electron densityN e , the electron temperatureT e , and the absorption coefficient α of the ArII-488 nm transition are measured by different experimental techniques. Axial and radial profiles ofN e andT e are determined, and used to decide on the relevant recombination mechanism. In spite of the fact that the dominant three-body recombination favours the population of the high-lying energy levels, population inversions have been observed even with the most sensitive method only in plasmas ejected from a reduced aperture of the MPD thruster. The theoretical analysis shows that the ranges ofT e andN e , in which recombination-lasing may be expected, are narrow. In addition, the mechanisms that limit the population inversions in discharge tubes of conventional Ar+-lasers restrict the dimension of the plasma perpendicular to the resonator axis. From these facts and the described measurements on population inversions we conclude that the initial diameter of the plasma has to be reduced. We therefore propose a new discharge configuration where extended regions of constant plasma parameters can be expected. With this arrangement it should be possible to reach population inversions required for laser oscillations in ArII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.I. Gudzenko, L.A. Shelepin: Sov. Phys. JETP18, 998–1000 (1964)

    Google Scholar 

  2. P. Wägli, W.L. Bohn: J. Appl. Phys.51, 3601–3603 (1980)

    Google Scholar 

  3. J.M. Green, W.T. Silfvast: Appl. Phys. Lett.28, 253–255 (1976)

    Google Scholar 

  4. A.W. Ali, W.W. Jones: Phys. Lett.55A 462–464 (1976)

    Google Scholar 

  5. O.R. Wood II, W.T. Silfvast: Appl. Phys. Lett.41 121–123 (1982)

    Google Scholar 

  6. E.L. Latush, M.F. Sem: JETP Lett.15, 457–459 (1972)

    Google Scholar 

  7. W.T. Silfvast, L.H. Szeto, O.R. Wood II: Opt. Lett.4, 271–273 (1979)

    Google Scholar 

  8. M. Brandt: Appl. Phys. Lett.42, 127–129 (1983)

    Google Scholar 

  9. M. Brandt: IEEE J. QE-20, 1006–1007 (1984)

    Google Scholar 

  10. M.S. Butler, J.A. Piper: Appl. Phys. Lett.45, 707–709 (1984)

    Google Scholar 

  11. P. Hoffmann, W.L. Bohn: Z. Naturforsch.27a, 878–880 (1972)

    Google Scholar 

  12. E.M. Campbell, R.G. Jahn, W.F. von Jaskowsky, K.E. Clark: Appl. Phys. Lett.30, 575–577 (1977)

    Google Scholar 

  13. T. Hara, K. Kodera, M. Hamagaki, K. Matsunaga, M. Inutake, T. Dote: Jap. J. Appl. Phys.19, L606-L608 (1980)

    Google Scholar 

  14. W.T. Silfvast, O.R. Wood II, J.J. Macklin: Appl. Phys. Lett.42, 347–349 (1983)

    Google Scholar 

  15. E. Fischer, Z. Rozkwitalski, F.K. Kneubühl: Appl. Phys. B38, 41–49 (1985)

    Google Scholar 

  16. S. Chen, T. Sekiguchi: J. Appl. Phys.36, 2363–2375 (1965)

    Google Scholar 

  17. F.F. Chen: “Electric Probes”, inPlasma Diagnostics, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York 1965)

    Google Scholar 

  18. A.A. Sonin: AIAA J.4, 1588–1596 (1966)

    Google Scholar 

  19. M.J. Boyle, K.E. Clark, R.G. Jahn: AIAA J.14, 955–962 (1976)

    Google Scholar 

  20. Y.B. Zel'dovich, Y.P. Raizer:Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York 1966)

    Google Scholar 

  21. W.T. Silfvast, J.M. Green, O.R. Wood II: Phys. Rev. Lett.35, 435–438 (1975)

    Google Scholar 

  22. A. Bauer, M. El-Nicklawy: “Determination of Radiation Temperature of a Plasma Layer in an Optical Resonator”, Phenomena in Ionized Gases, (1971) p. 371

  23. R.G. Jahn, K.E. Clark, W.F. von Jaskowski: “Pulsed Electromagnetic Gas Acceleration”, Rept. 634x, Dept. of Aerospace and Mechanical Sciences, Princeton Univ., Princeton, NJ (1974)

    Google Scholar 

  24. M. El-Nicklawy: Temperaturbestimmung einer Plasmaschicht im optischen Resonator, Dissertation, Univ. Karlsruhe (TH) (1971)

  25. F. Keilmann: Plasma Phys.14, 111–122 (1972)

    Google Scholar 

  26. J.P. Goldsborough: “Design of Gas Lasers”, inLaser Handbook, ed. by F.T. Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972)

    Google Scholar 

  27. J.D. Jackson:Classical Electrodynamics (Wiley, New York 1975)

    Google Scholar 

  28. W. Bohn: DFVLR Stuttgart (private communication)

  29. H.R. Lüthi, W. Seelig: Appl. Phys.6, 261–265 (1975)

    Google Scholar 

  30. T. Holstein: Phys. Rev.83, 1159–1168 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Polish Academy of Sciences, Gdansk, Poland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, E., Kopiczynski, T., Rozkwitalski, Z. et al. MPD arcs as plasma sources for recombination lasers. Appl. Phys. B 38, 79–89 (1985). https://doi.org/10.1007/BF00697446

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00697446

PACS

Navigation