Applied Physics B

, Volume 40, Issue 3, pp 141–146 | Cite as

Detailed analysis of active mode-locking

  • L. A. Zenteno
  • H. Avramopoulos
  • G. H. C. New
Contributed Papers

Abstract

We extend earlier work on the theory of active mode-locking in a laser with a very long gain recovery time and obtain approximate closed-form solutions. We show how the results can be reduced to the well-known Kuizenga and Siegman formulae in the limit of small modulation depth and large laser bandwidth.

We also discuss the physical relevance of the cavity “supermodes” in determining the stability properties of the mode-locked laser. We show that when the modulation depth is too small or the bandwidth too large, different supermodes have similar energies and we argue that under these circumstances, the laser will not be able to sustain mode-locked operation.

PACS

42.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H.C. New, L.A. Zenteno, P.M. Radmore: Opt. Commun.48, 149–154 (1983)Google Scholar
  2. 2.
    T.J. Nelson. JEEE J. QE-8, 29–33 (1972)Google Scholar
  3. 3.
    R.S. Putnam: J. Opt. Soc. Am. B1, 771–773 (1984)Google Scholar
  4. 4.
    D.J. Kuizenga, A.E. Siegman: IEEE J. QE-6, 694–708 (1970)Google Scholar
  5. 5.
    J.M. Catherall, G.H.C. New, P.M. Radmore: Opt. Lett.7, 319–321 (1982)Google Scholar
  6. 6.
    M. Piche: Can. J. Phys.61, 725–735 (1983)Google Scholar
  7. 7.
    H.A. Haus: IEEE J. QE-11, 323–330 (1975)Google Scholar
  8. 8.
    M. Abramowitz, J.A. Stegun:Handbook of Mathematical Functions (Dover, New York 1965) pp. 726–727Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • L. A. Zenteno
    • 1
  • H. Avramopoulos
    • 1
  • G. H. C. New
    • 1
  1. 1.Department of PhysicsImperial CollegeLondonUK

Personalised recommendations