Skip to main content
Log in

Kinetics and mechanisms of halide ion catalysis of CO substitution reactions in Os3(CO)12 and Ru3(CO)12 metal carbonyl clusters

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of kinetic studies on ligand substitution in [M3(CO)11X] complexes (M = Ru, Os; X = Cl, Br, I) are summarized. The [Os3(CO)11X] complexes react with PPh3 under mild conditions to initially yield monosubstituted products [Os3(CO)10(PPh3)X]. The rate of CO substitution obeys a first-order equation with respect to the concentration of the complex and does not depend on the ligand concentration. The rates of the reactions decrease in the order Cl > Br > I withΔH values increasing from 15 to 18 kcal mol−1 and ΔS values varying from −19 to −13 cal mol−1 K−1. The enhanced reactivities of these complexes as well as the low activation energies and negative activation entropies are discussed in terms of the effects of μ-X bridge formation on the transition state of the reaction. Reactions of PPN[Ru3(CO)11−x (Cl)] (PPN is the bis(triphenylphosphine)iminium cation;x=0, 1) and PPN[Ru3(CO)93-I)] with alkynes are also reported. The reactivities of alkynes follow the order BuC≡CH ≥ PhC≡CH ≥ EtC≡CEt ≥ PhC≡CPh. The higher rates of the reactions of monosubstituted acetylenes compared with those of their disubstituted analogs are explained by agostic interaction between the metal atom and the C-H bond in the reaction transition state and by steric effects. The results obtained attest that the reaction with alkynes occursvia intermediates containing halide bridges and that μ3-halide complexes are more reactive than μ2-halide complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Shen and F. Basolo,Organometallics, 1993,12, 2942;

    Google Scholar 

  2. J. K. Shen and F. Basolo,Gazz. Chim. Ital., 1994 (in press).

  3. R. J. Angelici and F. Basolo,J. Am. Chem. Soc., 1961,84, 2495.

    Google Scholar 

  4. J. D. Atwood and T. L. Brown,J. Am. Chem. Soc., 1975,97, 3380;

    Google Scholar 

  5. D. L. Lichtenberger and T. L. Brown,J. Am. Chem. Soc., 1978,100, 366;

    Google Scholar 

  6. T. L. Brown and J. D. Atwood,J. Am. Chem. Soc., 1976,98, 3160

    Google Scholar 

  7. A. R. Rossi and R. Hoffmann,Inorg. Chem., 1975,14, 365;

    Google Scholar 

  8. J. K. Burdett,Inorg. Chem., 1975,14, 375;

    Google Scholar 

  9. J. K. Burdett,Inorg. Chem., 1975,14, 931;

    Google Scholar 

  10. R. G. Pearson and F. Basolo,J. Am. Chem. Soc., 1956,78, 4878.

    Google Scholar 

  11. G. Lavigne inThe Chemistry of Metal Clusters, Ed. D. Shriver, R. D. Adams, and H. D. Kaesz, Verlag Chemie, 1990, Ch. 5, 201.

  12. P. Chini, G. Longoni, and V. G. Allano,Adv. Organomet. Chem., 1976,14, 285;

    Google Scholar 

  13. P. Chini, S. Martinego, and G. Giordano,Gazz. Chim. Ital., 1972,102, 330.

    Google Scholar 

  14. R. Szostak, C. E. Strouse, and H. D. Kaesz,J. Organomet. Chem., 1980,191, 243.

    Google Scholar 

  15. P. C. Ford and A. Rokicki,Adv. Organomet. Chem., 1988,28, 139.

    Google Scholar 

  16. N. Lugan, F. Laurent, G. Lavigne, T. P. Newcomb, E. W. Liimatta, and J. J. Bonnet,Organometallics, 1992,11, 1351.

    Google Scholar 

  17. D. E. Morris and F. Basolo,J. Am. Chem. Soc., 1968,90, 2536.

    Google Scholar 

  18. A. Shojaie and J. D. Atwood,Organometallics, 1985,4, 187;

    Google Scholar 

  19. A. J. Poë, inMechanisms of Inorganic and Organometallic Reactions, Ed. M. V. Twigg, Plenum Press, New York, 1994, Ch. 10.

    Google Scholar 

  20. D. F. Shriver, P. W. Atkins, and C. H. Langforg,Inorganic Chemistry, Oxford University Press, Oxford, 1990.

    Google Scholar 

  21. J. D. Atwood,Inorganic and Organometallic Reaction Mechanisms, Brooks/Cole, Monterey (California), 1985.

    Google Scholar 

  22. D. A. Brown and R. T. Sane,J. Chem. Soc. A, 1971, 2088.

    Google Scholar 

  23. M. Anstock, D. Taube, D. C. Gross, and P. C. Ford,J. Am. Chem. Soc., 1984,106, 3696.

    Google Scholar 

  24. A. Poë and V. C. Sekhar,J. Am. Chem. Soc., 1984,106, 5034.

    Google Scholar 

  25. J. L. Zuffa and W. L. Gladfelter,J. Am. Chem. Soc., 1986,108, 4669.

    Google Scholar 

  26. G. Lavigne and H. D. Kaesz,J. Am. Chem. Soc., 1984,106, 4647;

    Google Scholar 

  27. T. Chin-Choy, W. T. Harrison, G. D. Stucky, N. Keder, and P. C. Ford,Inorg. Chem., 1989,28, 2028;

    Google Scholar 

  28. S. Rivomanana, G. Lavigne, N. Lugan, J. J. Bonnet, R. Yanez, and R. J. Mathieu,J. Am. Chem. Soc., 1989,111, 8959;

    Google Scholar 

  29. S. Rivomanana, G. Lavigne, N. Lugan, and J. J. Bonnet,Organometallics, 1991,10, 2285.

    Google Scholar 

  30. J. L. Zuffa, S. J. Kivi, and W. L. Gladfelter,Inorg. Chem., 1989,28, 1888.

    Google Scholar 

  31. S. H. Han, G. Geoffroy, B. D. Dombek, and A. L. Rheingold,Inorg. Chem., 1988,27, 4355.

    Google Scholar 

  32. J. L. Lillis, A. Rokicki, T. Chin, and P. C. Ford,Inorg. Chem., 1993,32, 5040.

    Google Scholar 

  33. J. A. Gabeza, J. M. Ferneandez-Colinas, A. Llamazares, and V. Riera,Organometallics, 1993,12, 4141.

    Google Scholar 

  34. P. O. Stoutland and R. G. Bergman,J. Am. Chem. Soc., 1988,110, 5732;J. Am. Chem. Soc., 1985,107, 4581.

    Google Scholar 

  35. S. Zhang, G. R. Dobson, V. Zang, H. C. Bajaj, and R. V. Eldik,Inorg. Chem., 1990,29, 3477;

    Google Scholar 

  36. S. Zhang, J. K. Shen, F. Basolo, T. D. Ju, R. F. Lang, G. Kiss, and C. D. Hoff (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1540–1545, September, 1994.

This work was supported by a Presidential Grant from Northwestern University. One of the authors (F. Basolo) wishes to thank Academician M. E. Vol'pin for the invitation to participate in the Workshop “The Modern Problems of Organometallic Chemistry (INEOS-94)” and Academician O. M. Nefedov for the invitation to publish a review in theRussian Chemical Bulletin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.K., Basolo, F. Kinetics and mechanisms of halide ion catalysis of CO substitution reactions in Os3(CO)12 and Ru3(CO)12 metal carbonyl clusters. Russ Chem Bull 43, 1451–1456 (1994). https://doi.org/10.1007/BF00697124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00697124

Key words

Navigation