Russian Chemical Bulletin

, Volume 44, Issue 5, pp 836–839 | Cite as

Formation of anionic carbonylrhodium complexes from Wilkinson's complex under conditions of hydroformylation of formaldehyde

  • N. N. Ezhova
  • G. A. Korneeva
  • V. I. Kurkin
  • M. P. Filatova
  • E. V. Slivinsky
Physical Chemistry


The compositions and the dynamics of transformations of carbonylrhodium complexes formed from Wilkinson's complex, RhCl(PPh3)3, dissolved in mesitylene—N,N-dimethylacetamide (DMAA) mixtures in which the DMAA concentration varied from 0 to 100 %, in an atmosphere of synthesis gas\(p_{{\text{CO + H}}_{\text{2}} } \) = 6 MPa,T=373 K) were investigatedin situ by IR spectroscopy. The anion complexes, [Rh(CO)2(PPh3) x (DMAA) y ] (x=1, 2;y=1, 0) and [Rh(CO)4], which are the centers of formaldehyde hydroformylation, are produced in noticeable quantities when 100 % DMAA is used as a solvent. Separate steps of the formation of anionic complexes from RhCl(PPh3)3 have been identified. Under the conditions of hydroformylation of formaldehyde, CH2O participates in the formation of the anionic complexes, along with DMAA.

Key words

formaldehyde, hydroformylation Wilkinson's complex, anionic rhodium complexes N,N-dimethylacetamide in situ IR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Spencer,J. Organomet. Chem., 1980,194, 113.Google Scholar
  2. 2.
    A. S. C. Chan, W. E. Carrol, and D. E. Willis,J. Mol. Catal., 1983,19, 377.Google Scholar
  3. 3.
    S. E. Jacobson,J. Mol. Catal., 1987,41, 163.Google Scholar
  4. 4.
    N. N. Ezhova, G. A. Korneeva, V. I. Kurkin, and E. V. Slivinsky,Izv. Akad. Nauk, Ser. Khim., 1995, 1066 [Russ. Chem. Bull., 1995,44, 1027 (Engl. Transl.)].Google Scholar
  5. 5.
    USSR Pat. 1698713;Byul. Izobret., 1986, 13.Google Scholar
  6. 6.
    G. Wilkinson, J. A. Osborn, F. H. Jardine, and I. F. Young,J. Chem. Soc., 1966,12, 1711.Google Scholar
  7. 7.
    A. R. Sanger,Can. J. Chem., 1985,63, 571.Google Scholar
  8. 8.
    D. Evans, G. Yagupsky, and G. Wilkinson,J. Chem. Soc., A, 1968,11, 2660.Google Scholar
  9. 9.
    W. R. Moser, C. J. Papile, D. A. Brannon, and R. A. Duwell,J. Mol. Catal., 1987,41, 271.Google Scholar
  10. 10.
    J. P. Collmann, F. D. Vastine, and W. R. Roper,J. Am. Chem. Soc., 1968,90, 2282.Google Scholar
  11. 11.
    B. James,Gomogennoe gidrirovanie [Homogeneous Hydrogenation], Mir, Moscow, 1976 (Russ. Transl.).Google Scholar
  12. 12.
    M. Marchionna and G. Longoni,Gazz. Chim. Ital., 1986,116, 453.Google Scholar
  13. 13.
    J. Ohgomori, Sh. Mon, Sh.-I. Joshida, and J. Watanabe,J. Mol. Catal., 1987,40, 223.Google Scholar
  14. 14.
    G. A. Korneeva, N. N. Ezhova, V. G. Avakyan, E. V. Slivinsky, and S. M. Loktev,Izv. Akad. Nauk SSSR, Ser. Khim., 1989,2670 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989,38, 2444 (Engl. Transl.)].Google Scholar
  15. 15.
    US Pat. 4405821;Chem. Abstrs., 1983,97, 194433.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • N. N. Ezhova
    • 1
  • G. A. Korneeva
    • 1
  • V. I. Kurkin
    • 1
  • M. P. Filatova
    • 1
  • E. V. Slivinsky
    • 1
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations