Immunogenetics

, Volume 17, Issue 5, pp 507–521 | Cite as

H-2-Linked regulation of serum gp70 production in mice

  • Naoki Maruyama
  • Cary O. Lindstrom
Original Investigations

Abstract

By using many congenic strains of C57BL/10 (B10) mice and NZB mice, we have demonstrated a genetic system that controls the production of serum gp70. Our system has been tentatively designated asSgp-1 and is composed of three phenotypes, Sgp-1a, 1b, and 1c. This system appears to be closely linked to, but not in theH-2 region on chromosome 17. Sgp-1a, which is associated withH-2d, correlates with relatively large amounts of serum gp70 in B10 congenic lines. Sgp-1b, which appeared in most of theH-2 types tested, corresponds with low serum gp70 output in B10 congenic lines and F1 hybrid offspring of B10 and NZB crosses and with increased gp70 production after lipopolysaccharide (LPS) stimulation. Sgp-1c, which is associated withH-2s, also relates to small amounts of serum gp70 in B10 congenic lines and their F1 hybrids from NZB matings, but shows lack of serum gp70 responsiveness to LPS. This failure to accelerate serum gp70 production after injection of LPS is independent of other acute phase responses and polyclonal activation of B cells.

Keywords

Acute Phase Phase Response Genetic System Acute Phase Response Congenic Strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckler, C. E., Hoggan, M. D., Chan, H. W., Sears, J. F., Khan, A. S., Moore, J. L., Hartley, J. W., Rowe, W. P., and Martin, M. A.: Cloning and characterization of an envelope-specific probe from xenotropic murine proviral DNA.J. Virol. 41: 228–236, 1982Google Scholar
  2. Chan, H. W., Bryan, T., Moore, J.L., Staal, S. P., Rowe, W. P., and Martin, M. A.: Identification of ecotropic proviral sequences in inbred mouse strains with a cloned subgenomic DNA fragment.Proc. Natl. Acad. Sci. U.S.A. 77: 5779–5783, 1980Google Scholar
  3. Chattopadhyay, S. K., Lander, M. R., Rands, E., and Lowy, D. R.: Structure of endogenous murine leukemia virus DNA in mouse genomes.Proc. Natl.. Acad. Sci. U.S.A. 77: 5774–5778, 1980Google Scholar
  4. Chesebro, B. and Wehrly, K.:Rfo-1 andRfv-2, twoH-2 associated genes that influence recovery from Friend leukemia virus-induced splenomegaly.J. Immunol. 120: 1081–1085, 1978Google Scholar
  5. Datta, S. K. and Schwartz, R. S.: Mendelian segregation of loci controlling xenotropic virus production in NZB crosses.Virology 83: 449–452, 1977Google Scholar
  6. Datta, S. K., McConahey, P. J., Manny, N., Theofilopoulos, A. N., Dixon, F. J., and Schwartz, R. S.: Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand Black mice. II. The viral envelope glycoprotein gp70.J. Exp. Med. 147: 872–881, 1978Google Scholar
  7. DelVillano, B. C., Nave, B., Croker, B. P., Lerner, R. A., and Dixon, F. J.: The oncornavirus glycoprotein gp69/71: a constituent of the surface of normal and malignant thymocytes.J. Exp. Med. 141: 172 187, 1975Google Scholar
  8. Elder, J. H., Jensen, F. C., Bryant, M. N., and Lerner, R. A.: Polymorphism of the major envelope glycoprotein (gp70) of murine C-type viruses: virion associated and differentiation antigens encoded by a multi-gene family.Nature 267: 23–28, 1977Google Scholar
  9. Elder, J. H., Gautsch, J. W., Jensen, F. C., Lerner, R. A., Chused, T. M., Morse, H. C., Hartley, J. W., and Rowe, W. P.: Differential expression of two distinct xenotropic viruses in NZB mice.Clin. Immunol. Immunopathol. 15: 493–501, 1980Google Scholar
  10. Figueroa, F., Tewarson, S., Neufeld, E., and Klein, J.: H-2 haplotypes of strains DBR7, B IO.NZW, NFS, BQ2, STU, TO1, and T02.Immunogenetics 15: 431–436, 1982Google Scholar
  11. Hara, L, Izui, S., McConahey, P. J., Elder, J. H., Jensen, F. C., and Dixon, F. J.: Induction of high serum levels of retroviral env gene products (gp70) in mice by bacterial lipopolysaccharide.Proc. Natl. Acad. Sci. U.S.A. 78: 4397–4401, 1981Google Scholar
  12. Hara, I., Izui, S., and Dixon, F. J.: Murine serum glycoprotein gp70 behaves as an acute phase reactant.J. Exp. Med. 155: 345–357, 1982Google Scholar
  13. Izui, S., McConahey, P. J., Theofilopoulos, A. N., and Dixon, F. J.: Association of circulating retroviral gp70-anti-gp7O immune complexes with murine lupus erythematosus.J. Exp. Med. 149: 1099–1116, 1979Google Scholar
  14. Izui, S., McConahey, P. J., Clark, J. P., Hang, L. M., Hara, I., and Dixon, F. J.: Retroviral gp70 immune complexes in NZB x NZW F2 mice with murine lupus nephritis.J. Exp. Med. 154: 514–528, 1981aGoogle Scholar
  15. Izui, S., Elder, J. H., McConahey, P. J., and Dixon, F. J.: Identification of retroviral gp70 and anti-gp70 antibodies involved in circulating immune complexes in NZB x NZW mice.J. Exp. Med. 153: 1151–1160, 1981bGoogle Scholar
  16. Izui, S., Fernandes, G., Hara, I., McConahey, P. J., Jensen, F. C., Dixon, F. J., and Good, R. A.: Low-calorie diet selectively reduces expression of retroviral envelope glycoprotein gp70 in sera of NZB x NZW F1 hybrid mice.J. Exp. Med. 154: 1116–1124, 1981cGoogle Scholar
  17. Klein, J., Figueroa, F., and Klein, D.:tH-2 haplotypes, genes, and antigens: Second listing. I. The non-H-2 loci on chromosome 17.Immunogenetics 16: 285–317, 1982aGoogle Scholar
  18. Klein, D., Tewarson, S., Figueroa, F., and Klein, J.: The minimal length of the differential segment inH-2 congenic lines.Immunogenetics 16: 319–328, 1982bGoogle Scholar
  19. Kozak, C. A. and Rowe, W. P.: Genetic mapping of xenotropic leukemia virus-inducing loci in five mouse strains.J. Exp. Med. 152: 219–228, 1980Google Scholar
  20. Kozak, C. A. and Rowe, W. P.: Genetic mapping of ecotropic leukemia virus-inducing loci in six inbred strains.J. Exp. Med. 155: 524–534, 1982Google Scholar
  21. Levy, D. E., Lerner, R. A., and Wilson, M. C.: A genetic locus regulates the expression of tissue specific mRNAs from multiple transcription units.Proc. Natl. Acad. Sci. U.S.A. 79: 5823–5827, 1982Google Scholar
  22. Lilly, F. and Pincus, T.: Genetic control of murine viral leukemogenesis.Adv. Cancer Res. 17: 231–277, 1973Google Scholar
  23. Lonai, P., Katz, E., and Hara-Ghera, N.: I-region linked complementing loci in resistance to viral leukemogenesis in the mouse.Immunogenetics 10: 535–543, 1980Google Scholar
  24. Mancini, G., Cabonara, A. O., and Heremans, J. F.: Immunochemical quantitation of antigens by single radial immunodiffusion.Immunochemistry 2: 235–254, 1965Google Scholar
  25. Maruyama, N., Furukawa, F., Nakai, Y., Sasaki, Y., Ohta, K., Ozaki, S., Hirose, S., and Shirai, T.: Genetic studies of autoimmunity in New Zealand mice. IV. Contribution of NZB and NZW genes to the spontaneous occurrence of retroviral gp70 immune complexes in (NZB x NZW)F1 hybrid and the correlation to renal disease.J. Immunol., 130: 740–746, 1983Google Scholar
  26. Nakai, Y., Maruyama, N., Ohta, K., Yoshida, H., Hirose, S., and Shirai, T.: Genetic studies of autoimmunity in New Zealand mice. Association of circulating retroviral gp70 immune complex with proteinuria.Immunol. Lett. 2: 53–58, 1980Google Scholar
  27. Obata, Y., Ikeda, H., Stockert, E., and Boyse, E. A.: Relation of GIX antigen of thymocytes to envelope glycoprotein of murine leukemia virus.J. Exp. Med. 141: 188–197, 1975Google Scholar
  28. Obata, Y., Stockert, E., Yamaguchi, M., and Boyse, E. A.: Source and hormone-dependence of GIX-gp70 in mouse serum.J. Exp. Med. 148: 793–798, 1978Google Scholar
  29. Rowe, W. P.: Leukemia virus genomes in the chromosomal DNA of the mouse.Harvey Lect. 71: 173–192, 1978Google Scholar
  30. Steeves, R. and Lilly, F.: Interactions between host and viral genomes in mouse leukemia.Annu. Rev. Genet. 11: 277–296, 1977Google Scholar
  31. Strand, M., Lilly, F., and August, J. T.: Host control of endogenous murine leukemia virus gene expression: concentrations of viral proteins in high and low leukemia mouse strains.Proc. Natl. Acad. Sci. U.S.A. 71: 3682–3686, 1974Google Scholar
  32. Tucker, S. G. H., Weens, J., Tsichlis, P., Schwartz, R. S., Kbiroya, R., and Donnelly, J.: Influence of H-2 complex on susceptibility to infection by murine leukemia virus.J. Immunol. 118: 1239–1243, 1977Google Scholar
  33. Tung, J.-S., Vitetta, E. S., Fleissner, F., and Boyse, E. A.: Biochemical evidence linking the GIX thymocyte surface antigen to the gp69/71 envelope glycoprotein of murine leukemia virus.J. Exp. Med. 141: 198–205, 1975Google Scholar
  34. Vlug, A., Schoenmakers, H. J., and Melief, C. J. M.: Genes of the H-2 complex regulate the antibody response to murine leukemia virus.J. Immunol. 126: 2355–2360, 1981Google Scholar
  35. Wolfe, J. H., Blank, K. J., and Pincus, T.: Variation in RNA tumor virus expression in H-2 congenic leukemia cell lines.Immunogenetics 12: 187–190, 1981Google Scholar
  36. Yoshiki, T., Mellors, R. C., Strand, M., and August, J. T.: The viral envelope glycoprotein of murine leukemia virus and the pathogenesis of immune complex glomerulonephritis of New Zealand mice.J. Exp. Med. 140: 1011–1027, 1974Google Scholar

Copyright information

© J Springer-Verlag 1983

Authors and Affiliations

  • Naoki Maruyama
    • 1
  • Cary O. Lindstrom
    • 1
  1. 1.Department of ImmunologyScripps Clinic and Research FoundationLa Jolla

Personalised recommendations