Skip to main content
Log in

Near UV absorption spectra and photolysis products of difunctional organic nitrates: Possible importance as NO x reservoirs

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Difunctional organic nitrates are important products of the atmospheric reaction of NO3 radicals with unsaturated hydrocarbons about which relatively little is known. In a continuation of the investigation of the atmospheric chemistry of such compounds, the UV absorption spectra of the following organic dinitrates and keto nitrates have been quantitively measured in the gas phase at 298±2 K and atmospheric pressure: 1,2-propandiol dinitrate, CH3CH(ONO2)CH2(ONO2); 1,2-butandiol dinitrate, CH3CH2CH(ONO2)CH2(ONO2); 2,3-butandiol dinitrate, CH3CH(ONO2)CH(ONO2)CH3;cis 1,4-dinitrooxy-2-butene, CH2(ONO2)CH=CHCH2(ONO2); 3,4-dinitrooxy-1-butene, CH2(ONO2CH(ONO2)CH=CH2; α-nitrooxy acetone, CH3COCH2(ONO2); 1-nitrooxy-2-butanone, CH3CH2COCH2(ONO2); 3-nitrooxy-2-butanone, CH3CH(ONO2)COCH3.

Although the UV spectra of the nitrates are all very similar in shape those of the keto nitrates are red-shifted compared to the dinitrates and in the spectral range of atmospheric interest (λ>290 nm) their absorption cross-sections are approximately a factor of 5 higher. The cross-sections of the dinitrates are a factor of 2 higher than those reported in the literature for the corresponding alkyl mononitrates.

The UV absorption cross-sections of the difunctional nitrates were used in combination with solar actinic flux data to estimate photolysis frequencies and consequently atmospheric lifetimes for these compounds. The results indicate that for the saturated difunctional nitrates studied in this work photolysis will generally be somewhat some important than reaction with OH radicals as an atmospheric removal process. However, for unsaturated nitrates loss due to reaction with OH will dominate over photolysis as an atmospheric sink.

Preliminary FT-IR analyses of the photolysis products of α-nitrooxy acetone, 3-nitrooxy-2-butanone and 2,3-butandiol dinitrate using both mercury and fluorescent lamps indicate that NO2 is released in the primary step. The further reactions of the radicals thus produced result in the formation of CO, aldehydes and PAN. The possible significance of the results for difunctional organic nitrate as reservoirs for reactive odd nitrogen NO y in the atmosphere, especially during the night, is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akimoto, H., Hoshino, M., Inoue, G., Sakamak, F., Bandow, H., and Okuda, M., 1978, Formation of propylene glycol 1,2-dinitrate in the photooxidation of a propylene-nitrogen oxides-air system,J. Environ. Sci. Health A13, 677–686.

    Google Scholar 

  • Akimoto, H., Takaki, H., and Sakamak, F., 1987, Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: extra radical source in smog chamber experiments,Int. J. Chem. Kinet. 19, 539–551.

    Google Scholar 

  • Appel, B. R., Wall, S. M., and Knights, R. L., 1980, Characterization of carbonaceous materials in atmospheric aerosols by high-resolution mass spectrometric thermal analysis,Adv. Environ. Sci. Technol. 9, 353–364.

    Google Scholar 

  • Atherton, C. S., 1989, Organic nitrates in remote marine environments: Evidence for long range transport,Geophys. Res. Lett. 16, 1289–1292.

    Google Scholar 

  • Atherton, C. S. and Penner, J. E., 1988, The transformation of nitrogen oxides in the polluted troposphere,Tellus Ser. B. 40, 380–392.

    Google Scholar 

  • Atkinson, R. and Lloyd, A. C., 1984, Evaluation of kinetic and mechanistic data for modeling of photochemical smog,J. Phys. Chem. Ref. Data 13, 314–444.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N. Jr., 1984, Formation of alkyl nitrates from the reaction of branched and cyclic alkyl peroxy radicals with NO,Int. J. Chem. Kinetics 16, 1085–1101.

    Google Scholar 

  • Atkinson, R. and Aschmann, S. M., 1989, Rate constants for the reactions of the OH radical with the propyl and butyl nitrates and 1-nitrobutane at 298 ± 2 K,Int. J. Chem. Kinetics 21, 1123–1129.

    Google Scholar 

  • Atkinson, R., 1986, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions,Chem. Rev. 86, 69–201.

    Google Scholar 

  • Atkinson, R., 1990, Gas-phase tropospheric chemistry of organic compounds: A review,Atmos. Environ. 24A, 1–41.

    Google Scholar 

  • Atlas, E. L., 1988, Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres,Nature 331, 426–428.

    Google Scholar 

  • Atlas, E. L., Ridley, B. A., Hubler, G., Walega, J. G., Carroll, M. A., Montzka, D. D., Huebert, B. J., Norton, R. B., Grahek, F. E., and Schauffler, S., 1992a, Partitioning and budget of NOy species during the Mauna Loa Observatory photochemistry experiment,J. Geophys. Res. 97 (D10), 10,449–10,462.

    Google Scholar 

  • Atlas, E., Schauffler, S. M., Merrill, J. T., Hahn, C. J., Ridley, B., Walega, J., Greenberg, J., Hcidt, L., and Zimmerman, P., 1992b, Alkyl nitrate and selected halocarbon measurements at Mauna Loa Observatory, Hawaii,J. Geophys. Res. 97 (D10), 10,331–10,348.

    Google Scholar 

  • Bandow, H., Okuda, M., and Akimoto, H., 1980, Mechanism of the gas-phase reactions of C3H6 and NO3 radicals,J. Phys. Chem. 84, 3604–3608.

    Google Scholar 

  • Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Nik, H., 1983, Rate constants and products of the reaction CS2 + OH in the presence of O2,Int. J. Chem. Kinet. 15, 631–645.

    Google Scholar 

  • Barnes, I., Bastian, V., Becker, K. H., and Zhu, T., 1990, Kinetics and products of the reactions of NO3 with monoalkenes, dialkenes and monoterpenes,J. Phys. Chem. 94, 2413–2419.

    Google Scholar 

  • Becker, K. H. and Wirtz, K., 1989, Gas phase reactions of alkyl nitrates with hydroxyl radicals under tropospheric conditions in comparison with photolysis,J. Atmos. Chem. 9, 419–433.

    Google Scholar 

  • Buhr, M. P., Parrish, D. D., Norton, R. B., Fehsenfeld, F. C., and Sievers, R. E., 1990, Contribution of organic nitrates to the total reactive nitrogen budget at a rural eastern U.S. site,J. Geophys. Res. 95 (D7), 9809–9816.

    Google Scholar 

  • Calvert, J. G. and Madronich, S., 1987, Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons,J. Geophys. Res. 92 (D2), 2211–2220.

    Google Scholar 

  • Carter, W. P. L., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1982, Experimental investigation of chamber-dependent radical sources,Int. J. Chem. Kinet. 14, 1071–1103.

    Google Scholar 

  • Crutzen, P. J., 1979, The role of NO and NO2 chemistry of the troposphere and stratosphere,Ann. Rev. Earth Planet. Sci. 7, 443–472.

    Google Scholar 

  • Crutzen, P. J. and Zimmermann, P. H., 1991, The changing photochemistry of the troposphere,Tellus 43 AB, 136–151.

    Google Scholar 

  • Csizmadia, V. M., Houlden, S. A., Koves, G. J., Boggs, J. M., and Csizmadia, I. G., 1973, The stereochemistry and ultraviolet spectra of simple nitrate esters,J. Org. Chem. 38, 2281–2287.

    Google Scholar 

  • Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980, Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,Adv. Environ. Sci. Technol. 10, 369–459.

    Google Scholar 

  • Fahey, D. W., Hübler, G., Parrish, D. D., Williams, E. J., Norton, R. B., Ridley, B. A., Singh, H. B., Liu, S. C., and Fehsenfeld, F. C., 1986, Reactive nitrogen species in the troposphere: Measurements of NO, NO2, HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and total reactive odd nitrogen (NO y ) at Niwot Ridge, Colorado,J. Geophys. Res. 91, 9781–9793.

    Google Scholar 

  • Fishbein, L. and Gallaghan, J. A., 1956, The preparation of cis- and trans-1,4-dinitroxy-2-butene,J. Am. Chem. Soc. 78, 1218.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N. Jr., 1986,Atmospheric Chemistry: Fundamentals and Experimental Techniques, Wiley, New York.

    Google Scholar 

  • Flocke, F., Volz-Thomas, A., and Kley, D., 1991, Measurements of alkyl nitrates in rural and polluted air masses,Atmos. Environ. 25A, 1951–1960.

    Google Scholar 

  • Gaffney, J. S., Fajer, R., Senum, G. L., and Lee, J. H., 1986, Measurement of the reactivity of OH with methyl nitrate: implication for prediction of alkyl nitrate-OH reaction rates,Int. J. Chem. Kinetics 18, 399–407.

    Google Scholar 

  • Gray, P. and Rogers, G. T., 1954, The explosion and decomposition of methyl nitrate in the gas phase,Trans. Faraday Soc. 50, 28–36.

    Google Scholar 

  • Gray, P. and Style, D. W. G., 1953, The photolysis of ethyl nitrate,Trans. Faraday Soc. 49, 52–57.

    Google Scholar 

  • Grosjean, D., Parmar, S. S., and Williams II, E. L., 1990, Southern California air quality study: A search for methyl nitrate,Atmos. Environ. 24A, 1207–1210.

    Google Scholar 

  • Hjorth, J., Lohse, C., Nielson, C. J., Skov, H., and Restelli, G., 1990, Products and mechanisms of gas phase reactions between NO3 and a series of alkenes,J. Phys. Chem. 94, 7494–7500.

    Google Scholar 

  • Hoshino, M., Ogata, T., Akimoto, H., Inoue, G., Sakamaki, F., and Okuda, M., 1978, Gas phase reaction of N2O5 with propylene,Chem. Lett. 1367–1370.

  • Johnston, H. S., Chang, S.-G., and Whitten, G., 1974, Photolysis of nitric acid vapor,J. Phys. Chem. 78, 1–7.

    Google Scholar 

  • Josson, A. and Berg, S., 1983, Determination of low-molecule-weight oxygenated hydrocarbons in ambient air by cryogenic sampling and two-dimensional gas chromatography,J. Chromatogr. 279, 307–322.

    Google Scholar 

  • Jüttner, F., 1988, A cryotrap technique for the quantitation of monoterpenes in humid and ozone-rich forest air,J. Chromatogr. 442, 157–163.

    Google Scholar 

  • Kames, J. and Schurath, U., 1992, Alkyl nitrates and blfunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies,J. Atmos. Chem. 15, 79–95.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. J., 1981, Tropospheric chemistry: a global perspective,J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Luke, W. T. and Dickerson, R. R., 1988, Direct measurements of the photolysis rate coefficient of ethyl nitrate,Geophys. Res. Lett. 15, 1181–1184.

    Google Scholar 

  • Luke, W. T., Dickerson, R. R., and Nunnermacker, L. J., 1989, Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates,J. Geophys. Res. 94, D12, 14,905–14,921.

    Google Scholar 

  • Madronich, S. and Calvert, J. G., 1990, Permutation reactions of organic radicals in the troposphere,J. Geophys. Res. 95, 5697–5717.

    Google Scholar 

  • Maria, H. J., McDonal, J. R., and McGlynn, S. P., 1973, Electronic absorption spectrum of nitrate ion and boron trihalides,J. Am. Chem. Soc. 95, 1050–1056.

    Google Scholar 

  • McKay, A. F., Meen, R. H., and Wright, G. F., 1948, levo-2,3-Dinitroxybutane,J. Am. Chem. Soc. 70, 430.

    Google Scholar 

  • Plum, C. N., Sanhueza, E., Atkinson, R., Carter, W. P. L., and Pitts, J. N. Jr., 1983, OH radical rate constants and photolysis rates of α-dicarbonyls,Environ. Sci. Technol. 17, 479–484.

    Google Scholar 

  • Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., Fraser, P., and Rosen, R., 1987, Atmospheric trends in methylchloroform and the global average for the hydroxyl radical,Science 238, 945–950.

    Google Scholar 

  • Rebbert, R. E., 1963, Primary processes in the photolysis of ethyl nitrate,J. Phys. Chem. 67, 1923–1925.

    Google Scholar 

  • Renlund, A. M. and Trott, W. M., 1984, ArF laser-induced decomposition of simple energetic molecules,Chem. Phys. Lett. 107, 555–560.

    Google Scholar 

  • Ridley, B. A., Shetter, J. D., Walega, J. G., Madronich, S., Elsworth, C. M., Grahek, F. E., Fehsenfeld, F. C., Norton, R. B., Parrish, D. D., Hübler, G., Buhr, M., Williams, E. J., Allwine, E. J., and Westberg, H. H., 1990, The behaviour of some organic nitrates at Boulder and Niwot Ridge, Colorado,J. Geophys. Res. 95 D9, 13,949–13,961.

    Google Scholar 

  • Roberts, J. M., 1990, The atmospheric chemistry of organic nitrates,Atmos. Environ. 24A, 243–287.

    Google Scholar 

  • Roberts, J. M. and Fajer, R. W., 1989, UV absorption cross sections of organic nitrates of potential atmospheric importance and estimation of atmospheric lifetimes,Environ. Sci. Technol. 23, 945–951.

    Google Scholar 

  • Sakamaki, F., Okuda, M., Akimoto, H., and Yamazaki, H., 1982, Computer modelling study of photochemical ozone formation in the propene-nitrogen oxides-dry air system, generalized maximum ozone isopleth,Environ. Sci. Technol. 16, 45–52.

    Google Scholar 

  • Schuetzle, D., Cronn, D., Crittendon, A. L., and Charlson, R. J., 1975, Molecular composition of secondary aerosol and its possible origin,Environ. Sci. Technol. 9, 838–845.

    Google Scholar 

  • Shepson, P. B., Edney, E. O., Kleindienst, T. E., Pittman, J. H., Namie, G. R., and Cupitt L. T., 1985, The production of organic nitrates from hydroxyl and nitrate radical reaction with propylene,Environ. Sci. Technol. 19, 849–854.

    Google Scholar 

  • Singh, H. B. and Hanst, P. L., 1981, Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: an important reservoir for nitrogen oxides,Geophys. Res. Lett. 8, 941–944.

    Google Scholar 

  • Stockwell, W. R., 1986, A homogeneous gas phase mechanism for use in a regional acid deposition model,Atmos. Environ. 20, 1615–1632.

    Google Scholar 

  • Taylor, W. D., Allston, T. D., Moscato, M. J., Fazekas, G. B., Kozlowski, R., and Takacs, G. A. (1980), Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate,Int. J. Chem. Kinet. 12, 231–240.

    Google Scholar 

  • Tsalkani, N., Mellouki, A., Poulet, G., Toupance, G., and Le Bras, G., 1988, Rate constant measurement for the reactions of OH and Cl with peroxyacetyl nitrate at 298 K,J. Atmos. Chem. 7, 409–419.

    Google Scholar 

  • Turberg, M. P., Giolando, D. M., Tilt, C., Soper, T., Mason, S., Davis, M., Klingensmith, P., and Takacs, G. A., 1990, Atmospheric photochemistry of alkyl nitrates,J. Photochem. Photobiology A: Chemistry 51, 281–292.

    Google Scholar 

  • Tuazon, E. C., Carter, W. P. L. and Atkinson, R., 1991, Thermal decomposition of peroxyacetyl nitrate and reactions of acetylperoxy radicals with NO and NO2 over the temperature range 283–313K,J. Phys. Chem. 95, 2434–2437.

    Google Scholar 

  • Wallington, T. J., Atkinson, R., and Winer, A. M., 1984, Rate constants for the gas-phase reaction of OH radicals with peroxyacetyl nitrate (PAN) at 273 and 297 K,Geophys. Res. Letters 11, 861–864.

    Google Scholar 

  • Wayne, R., Barnes, I, Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G., Perner, D., Poule, G., Restelli, G., and Sidebottom, H., 1991, The Nitrate Radical: Physics, chemistry and the atmosphere,Atmos. Environ. 25A, 1–206.

    Google Scholar 

  • Zabel, F., Reimer, A., Becker, K. H., and Fink, E. H., 1989, Thermal decomposition of alkyl peroxynitrates,J. Phys. Chem. 93, 5500–5507.

    Google Scholar 

  • Zhu, T., Barnes, I., and Becker, K. H., 1991, Relative-rate study of the gas-phase reaction of hydroxy radicals with difunctional organic nitrates at 298 K and atmospheric pressure,J. Atmos. Chem. 13, 301–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, I., Becker, K.H. & Zhu, T. Near UV absorption spectra and photolysis products of difunctional organic nitrates: Possible importance as NO x reservoirs. J Atmos Chem 17, 353–373 (1993). https://doi.org/10.1007/BF00696854

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696854

Key words

Navigation