Journal of Atmospheric Chemistry

, Volume 18, Issue 2, pp 149–169 | Cite as

Experimental determination of HONO mass accommodation coefficients using two different techniques

  • A. Bongartz
  • J. Kames
  • U. Schurath
  • Ch. George
  • Ph. Mirabel
  • J. L. Ponche


The mass accommodation coefficient αHONO of gaseous nitrous acid on water surfaces has been determined in a cooperation between the Universities of Strasbourg and Bonn. The droplet train technique (Strasbourg) yielded 0.04<αHONO<0.09 for an estimated surface temperature of 245 K, while the liquid jet technique (Bonn) yielded 0.03<αHONO<0.15 for a surface temperature of 297 K. The uncertainty ranges allow for experimental scatter and estimated uncertainties in diffusion coefficients. The same HONO source and analytical equipment were used for both experiments, which were run in parallel. The results indicate that the exchange rate of HONO between atmospheric water droplets and interstitial air is not inhibited by interfacial resistance.

Key words

Mass accommodation coefficient nitrous acid absorption cross section mondisperse droplets liquid jet interfacial resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimoto, H., Takagi, H., and Sakamaki, F., 1981, Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: extra radical source in smog chamber experiments,Int. J. Chem. Kinet. 19, 539–551.Google Scholar
  2. Berglund, R. N. and Liu, B. Y. H., 1973, Generation of monodisperse aerosol standards,Environ. Sci. Technol. 7, 147–153.Google Scholar
  3. Bongartz, A., Kames, J., Welter, F., and Schurath, U., 1991, Near-uv absorption cross sections and trans/cis equilibrium of nitrous acid,J. Phys. Chem. 95, 1076–1082.Google Scholar
  4. Bongartz, A., Schweighoefer, S., Roose, Ch. and Schurath, U., The mass accommodation coefficient of ammonia on water,J. Atmos. Chem., accepted for publication.Google Scholar
  5. Cape, J. N., Hargreaves, K. J., Storeton-West, R., Fowler, D., Colvilee, R. N., Choularton, T. W., and Gallagher, M. W., 1992, Nitrite in orographic cloud as an indicator of nitrous acid in rural air,Atmos. Environ. 26A, 2301–2307.Google Scholar
  6. Chan, W. H., Nordstrom, R. J., Calvert, J. G., and Shaw, J. H., 1976, An IRFTS spectroscopic study of the kinetics and mechanism of the reactions in the gaseous system, HONO, NO, NO2, H2O,Chem. Phys. Lett. 37, 441–446.Google Scholar
  7. Chan, W. H., Nordstrom, R. J., Calvert, J. G., and Shaw, J. H., 1976, Kinetic study of HONO formation and decay reactions in gaseous mixtures of HONO, NO, NO2, H2O, and N2,Environ. Sci. Technol. 10, 674–682.Google Scholar
  8. Cox, R. A., 1974, The photolysis of gaseous nitrous acid,J. Photochem. 3, 175–188.Google Scholar
  9. CRC Handbook of Chemistry and Physics, 65th Edn., C. R. Weast (ed.), CRC Press Inc., 1985.Google Scholar
  10. Davidovits, P., Jayne, J. T., Duan, S. X., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of Gas Molecules by Liquids: A Model,J. Phys. Chem. 95, 6337–6340.Google Scholar
  11. Duda, J. L. and Vrentas, J. S., 1966, Fluid mechanics of laminar liquid jets,Chem. Eng. Sci. 22, 855–869.Google Scholar
  12. Ferm, M. and Sjödin, A., 1985, A sodium carbonate coated denuder for determination of nitrous acid in the atmosphere,Atmos. Environ. 19, 979–983.Google Scholar
  13. Gardner, J. A., Watson, L. R., Adewuyi, Y. G., Davidovits, P., Zahniser, P., Worsnop, D. R., and Kolb, C. E., 1987, Measurements of the mass accommodation coefficient of SO2(g) on water droplets,J. Geophys. Res. 92, 10887–10895.Google Scholar
  14. Harris, G. W., Carter, W. P. L., Winer, A. M., Pitts, J. N., Platt, U., and Perner, D., 1982, Observations of nitrous acid in the Los Angeles atmosphere and implications for predictions of ozone-precursor relationship,Environ. Sci. Technol. 16, 414–419.Google Scholar
  15. Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990a, Uptake of SO2(g) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface,J. Phys. Chem. 94, 6041–6048.Google Scholar
  16. Jayne, J. T., Gardner, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990b, The effect of H2O2 content on the uptake of SO2(g) by aqueous droplets,J. Geophys. Res. 95, 20559–20563.Google Scholar
  17. Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of gas-phase alcohol and organic acid molecules by water surfaces,J. Phys. Chem. 95, 6329–6336.Google Scholar
  18. Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1992, Uptake of gas-phase aldehydes by water surfaces,J. Phys. Chem. 96, 5452–5460.Google Scholar
  19. Jenkin, M. E., Cox, R. A., and Williams, D. J., 1988, Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour,Atmos. Environ. 22, 487–498.Google Scholar
  20. Junkermann, W. and Ibusuki, T., 1992, FTIR spectroscopic measurements of surface bond products of nitrogen oxides on aerosol surfaces — implications for heterogeneous HNO2 production,Atmos. Environ. 26A, 3099–3103.Google Scholar
  21. Kaiser, E. W. and Wu, C. H., 1977, A kinetic study of the gas phase formation and decomposition reactions of nitrous acid,J. Phys. Chem. 81, 1701–1706.Google Scholar
  22. Killus, J. P., and Whitten, G. Z., 1990, Background reactivity in smog chambers,Int. J. Chem. Kinet. 22, 547–575.Google Scholar
  23. Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U., 1990, Trace gas exchange at the air/water interface: measurements of mass accommodation coefficients,J. Atmos. Chem. 10, 427–449.Google Scholar
  24. Lammel, G., Perner, D., and Warneck, P., 1989, Nitrous acid at Mainz: observation and implication for its formation mechanism. In G. Restelli and G. Angeletti (eds.), Kluwer, Dordrecht.Google Scholar
  25. Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface,Nature 247, 181–184.Google Scholar
  26. Northolt, J., Hjort, J., and Raes, F., 1992, Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2,Atmos. Environ. 26, 211–217.Google Scholar
  27. Park, J. Y. and Lee, Y. N., 1988, Solubility and decomposition of nitrous acid in aqueous solution,J. Phys. Chem. 92, 6294–6302.Google Scholar
  28. Pitts Jr., J. N., Biermann, H. W., Winer, A. M., and Tuazon, E. C., 1984, Spectroscopic identification and measurements of gaseous nitrous acid in dilute auto exhaust,Atmos. Environ. 18, 847–854.Google Scholar
  29. Platt, U., and Perner, D., 1980, Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,J. Geophys. Res. 85, 7453–7458.Google Scholar
  30. Ponche, J. L., George, Ch., and Mirabel, Ph., 1993, Mass transfer at the air/water interface: mass accommodation coefficients of SO2, HNO3, NO2 and NH3,J. Atmos. Chem. 16, 1–21.Google Scholar
  31. Pruppacher, H. R., and Klett, J. D., 1978, ‘Mocrophysics of clouds and precipitation’, D. Reidel, Boston, 136–162.Google Scholar
  32. Reid, C. R. and Sherwood, T. K., 1986,The Properties of Gases and Liquids, McGraw-Hill, New York, pp. 520–565.Google Scholar
  33. Sakamaki, F., Hatakeyama, S., and Akimoto, H., 1983, Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapour in a smog chamber,Int. J. Chem. Kinet. 15, 1013–1029.Google Scholar
  34. Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions in gases and liquid-water clouds, in W. Jaeschke (ed.),Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6, Springer-Verlag, Heidelberg, pp. 415–471.Google Scholar
  35. Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W., Lal, D., Liss, P. S., Munnich, K. O., Sehmel, G. A., and Vittori, O., 1978, Some aspects of the transfer of atmospheric trace constituents past the air-sea interface,Atmos. Environ. 12, 2055–2087.Google Scholar
  36. Staker, G. R. and Dunlop, P. J., 1976, The pressure dependence of the mutual diffusion coefficients of binary mixtures of helium and six other gases at 300 K; test of Thorne's equation,Chem. Phys. Lett. 42, 419–422.Google Scholar
  37. Svensson, R., Lungström, E., and Lindquist, O., 1987, Kinetics of the reaction between nitrogen dioxide and water vapour,Atmos. Environ. 21, 1529–1539.Google Scholar
  38. Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990, Temperature dependence of the uptake of HNO3, HCl, and N2O5 by water droplets,J. Phys. Chem. 93, 3265–3269.Google Scholar
  39. Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets,J. Phys. Chem. 95, 1684–1689.Google Scholar
  40. Watson, L. R., Van Doren, J. M., Davidovits, P., Worsnop, D. R., Zahniser, S., and Kolb, C. E., Uptake of HCl molecules by sulfuric acid droplets as a function of acid concentration,J. Geophys. Res. 95, 5631–5638.Google Scholar
  41. Welter, F., Schweighoefer, S., and Schurath, U., 1991, Mass accommodation coefficient of SO2 on water measured by the liquid jet technique, in P. Borrell, P. M. Borrell and W. Seiler (eds.),Transport and Transformation of Pollutants in the Troposphere: Proceedings of EUROTRAC Symposium '90, SPB Academic Publishing, The Hague, pp. 335–339.Google Scholar
  42. Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Jayne, J. T., Watson, L. R., Van Doren, J. M., and Davidovits, P., 1989, Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces,J. Phys. Chem. 93, 1159–1172.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • A. Bongartz
    • 1
  • J. Kames
    • 1
  • U. Schurath
    • 1
  • Ch. George
    • 2
  • Ph. Mirabel
    • 2
  • J. L. Ponche
    • 2
  1. 1.Institut für Physikalische und Theoretische Chemie der Universität BonnBonn 1Germany
  2. 2.Centre de Géochimie de la Surface and Chemistry DepartmentUniversité Louis PasteurStrasbourgFrance

Personalised recommendations