Skip to main content
Log in

Impact of cloud dynamics on tropospheric chemistry: Advances in modeling the interactions between microphysical and chemical processes

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A chemical module describing the tropospheric photochemistry of ozone precursors in both gaseous and aqueous phases for a remote continental atmosphere has been developed within the framework of a two-dimensional cloud model. Dynamical, microphysical and chemical processes are fully interacting in order to study the influence of clouds on ozone chemistry and to quantify the relative importance of the different processes on the budget and evolution of 12 chemical species. Whereas the concentrations of highly soluble species are strongly affected by evaporation and sedimentation, less soluble species are affected primarily by accretion. The model reproduces previously observed chemical phenomena such as the enrichment of formic acid at the top of the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C., 1988, Formic and acetic acids over the central Amazon region, Brazil 1, dry season,J. Geophys. Res. 93, 1616–1624.

    Google Scholar 

  • Barth, M. C., Hegg, D. A., and Hobbs, P. V., 1992, Numerical modeling of cloud and precipitation chemistry associated with two rainbands and some comparisons with observations,J. Geophys. Res. 97, 5825–5845.

    Google Scholar 

  • Cautenet, S. and Lefeivre, B., 1994, Influences on the chemistry of physical parameters of convective precipitations: numerical study and comparison with results in the African Equatorial Forest.

  • Chameides, W. L., 1984, The photochemistry of a remote marine stratiform cloud,J. Geophys. Res. 89, 4739–4755.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987, A three dimensional eulerian acid deposition model: physical concepts and formulation,J. Geophys. Res. 92, 14,681–14,700.

    Google Scholar 

  • Chaumerliac, N., Richard, E., Pinty, J. P., and Nickerson, E. C., 1987, Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: two dimensional results for continental and maritime clouds,J. Geophys. Res. 92, 3114–3126.

    Google Scholar 

  • Chaumerliac, N., Richard, E., Rosset, R., and Nickerson, E. C., 1990, Impact of two microphysical schemes upon gas scavenging and deposition in a mesoscale meteorological model,J. Applied Meteorol. 30, 88–97.

    Google Scholar 

  • Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M., 1982, The composition of precipitation in remote areas in the world,J. Geophys. Res. 87, 8771–8786.

    Google Scholar 

  • Gear, C. W., 1971, The automatic integration of ordinary differential equations,ACM Comm. 14, 176–190.

    Google Scholar 

  • Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and raindrops,Rev. Geophys. Space. Phys. 19, 505–539.

    Google Scholar 

  • Hales, J. M., 1989, A generalized multidimensional model for precipitation scavenging and atmospheric chemistry,Atmos. Environ. 23, 2017–2031.

    Google Scholar 

  • Hong, M. S. and Carmichael, G. R., 1983, An investigation of sulfate production in clouds using a flow-through chemical reactor model approach,J. Geophys. Res. 88, 10,733–10,743.

    Google Scholar 

  • Iribarne, J. V. and Cho, H. R., 1989, Models of cloud chemistry,Tellus 41B, 2–23.

    Google Scholar 

  • Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91, 9807–9826.

    Google Scholar 

  • Kessler, E., 1969, On the distribution and continuity of water substance in atmospheric circulations,Meteor. Monogr. 10 (32) 84 pp.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1990, Influences of cloud photochemical processes on tropospheric ozone,Nature 343, 227–233.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1991, The role of clouds in tropospheric photochemistry,J. Atmos. Chem. 12, 229–267.

    Google Scholar 

  • Liu, J. Y. and Orville, H. D., 1969, Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli,J. Atmos. Sci. 26, 1283–1298.

    Google Scholar 

  • Liu, S. C., Trainer, M., Carrol, M. A., Montzka, D. D., Hübler, G., Norton, R. B., Atlas, E. L., Heikes, B. G., Huebert, B. J., Warren, W., Riedley, B. A., and Walega, J. G., 1992, A study of the photochemistry and ozone budget during the Mauna Loa Observatory Photochemistry Experiment 1988,J. Geophys. Res. 97, 10,463–10,471.

    Google Scholar 

  • Madronich, S., 1987, Photodissociation in the atmosphere: 1: Actinic flux and the effect of ground reflections and clouds,J. Geophys. Res. 92, 9740–9752.

    Google Scholar 

  • Marshall, J. S. and Palmer, W. McK., 1948, The distribution of raindrops with size,J. Meteorol. 5, 165–166.

    Google Scholar 

  • Noone, K. J., Charlson, R. J., Covert, D. S., Ogren, J. A., and Heintzenberg, J., 1988, Cloud droplets: solute concentration is size dependent,J. Geophys. Res. 93, 9477–9482.

    Google Scholar 

  • Norton, R. B., Carrol, M. A., Montzka, D. D., Hübler, G., Huebert, B. J., Lee, G., Warren, W. W., Riedley, B. A., and Wlega, J. G., 1992, Measurements of nitric acid and acrosol nitrate at the Mauna Loa Observatory during the Mauna Loa Observatory Photochemistry Experiment 1988,J. Geophys. Res. 97, 10,415–10,425.

    Google Scholar 

  • Orville, H. D. and Kopp, J., 1977, Numerical simulation of the life history of a hail-storm,J. Atmos. Sci. 34, 1596–1618.

    Google Scholar 

  • Qin, Y. and Chameides, W. L., 1986, The removal of soluble species by warm stratiform clouds,Tellus 38B, 285–299.

    Google Scholar 

  • Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds,Chemistry of multi-phase atmospheric systems (ed. Jaeschke), NATO ASI Series, G6, Springer-Verlag, Heidelberg, pp. 415–471.

    Google Scholar 

  • Seigneur, C., 1990, Status of subregional and mesoscale models; Vol 1: Air quality models, EPRI Report EN-6649 Project 2434-6, 81 pp.

  • Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grégoire, P.J., Chaumerliac, N. & Nickerson, E.C. Impact of cloud dynamics on tropospheric chemistry: Advances in modeling the interactions between microphysical and chemical processes. J Atmos Chem 18, 247–266 (1994). https://doi.org/10.1007/BF00696782

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696782

Key words

Navigation