Journal of Atmospheric Chemistry

, Volume 18, Issue 3, pp 247–266 | Cite as

Impact of cloud dynamics on tropospheric chemistry: Advances in modeling the interactions between microphysical and chemical processes

  • P. J. Grégoire
  • N. Chaumerliac
  • E. C. Nickerson


A chemical module describing the tropospheric photochemistry of ozone precursors in both gaseous and aqueous phases for a remote continental atmosphere has been developed within the framework of a two-dimensional cloud model. Dynamical, microphysical and chemical processes are fully interacting in order to study the influence of clouds on ozone chemistry and to quantify the relative importance of the different processes on the budget and evolution of 12 chemical species. Whereas the concentrations of highly soluble species are strongly affected by evaporation and sedimentation, less soluble species are affected primarily by accretion. The model reproduces previously observed chemical phenomena such as the enrichment of formic acid at the top of the cloud.

Key words

cloud chemistry remote troposphere gaseous/aqueous exchange microphysics radicals O3 precursors HCO2vertical profiles in-cloud evolutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C., 1988, Formic and acetic acids over the central Amazon region, Brazil 1, dry season,J. Geophys. Res. 93, 1616–1624.Google Scholar
  2. Barth, M. C., Hegg, D. A., and Hobbs, P. V., 1992, Numerical modeling of cloud and precipitation chemistry associated with two rainbands and some comparisons with observations,J. Geophys. Res. 97, 5825–5845.Google Scholar
  3. Cautenet, S. and Lefeivre, B., 1994, Influences on the chemistry of physical parameters of convective precipitations: numerical study and comparison with results in the African Equatorial Forest.Google Scholar
  4. Chameides, W. L., 1984, The photochemistry of a remote marine stratiform cloud,J. Geophys. Res. 89, 4739–4755.Google Scholar
  5. Chang, J. S., Brost, R. A., Isaksen, I. S., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987, A three dimensional eulerian acid deposition model: physical concepts and formulation,J. Geophys. Res. 92, 14,681–14,700.Google Scholar
  6. Chaumerliac, N., Richard, E., Pinty, J. P., and Nickerson, E. C., 1987, Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: two dimensional results for continental and maritime clouds,J. Geophys. Res. 92, 3114–3126.Google Scholar
  7. Chaumerliac, N., Richard, E., Rosset, R., and Nickerson, E. C., 1990, Impact of two microphysical schemes upon gas scavenging and deposition in a mesoscale meteorological model,J. Applied Meteorol. 30, 88–97.Google Scholar
  8. Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M., 1982, The composition of precipitation in remote areas in the world,J. Geophys. Res. 87, 8771–8786.Google Scholar
  9. Gear, C. W., 1971, The automatic integration of ordinary differential equations,ACM Comm. 14, 176–190.Google Scholar
  10. Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and raindrops,Rev. Geophys. Space. Phys. 19, 505–539.Google Scholar
  11. Hales, J. M., 1989, A generalized multidimensional model for precipitation scavenging and atmospheric chemistry,Atmos. Environ. 23, 2017–2031.Google Scholar
  12. Hong, M. S. and Carmichael, G. R., 1983, An investigation of sulfate production in clouds using a flow-through chemical reactor model approach,J. Geophys. Res. 88, 10,733–10,743.Google Scholar
  13. Iribarne, J. V. and Cho, H. R., 1989, Models of cloud chemistry,Tellus 41B, 2–23.Google Scholar
  14. Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91, 9807–9826.Google Scholar
  15. Kessler, E., 1969, On the distribution and continuity of water substance in atmospheric circulations,Meteor. Monogr. 10 (32) 84 pp.Google Scholar
  16. Lelieveld, J. and Crutzen, P. J., 1990, Influences of cloud photochemical processes on tropospheric ozone,Nature 343, 227–233.Google Scholar
  17. Lelieveld, J. and Crutzen, P. J., 1991, The role of clouds in tropospheric photochemistry,J. Atmos. Chem. 12, 229–267.Google Scholar
  18. Liu, J. Y. and Orville, H. D., 1969, Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli,J. Atmos. Sci. 26, 1283–1298.Google Scholar
  19. Liu, S. C., Trainer, M., Carrol, M. A., Montzka, D. D., Hübler, G., Norton, R. B., Atlas, E. L., Heikes, B. G., Huebert, B. J., Warren, W., Riedley, B. A., and Walega, J. G., 1992, A study of the photochemistry and ozone budget during the Mauna Loa Observatory Photochemistry Experiment 1988,J. Geophys. Res. 97, 10,463–10,471.Google Scholar
  20. Madronich, S., 1987, Photodissociation in the atmosphere: 1: Actinic flux and the effect of ground reflections and clouds,J. Geophys. Res. 92, 9740–9752.Google Scholar
  21. Marshall, J. S. and Palmer, W. McK., 1948, The distribution of raindrops with size,J. Meteorol. 5, 165–166.Google Scholar
  22. Noone, K. J., Charlson, R. J., Covert, D. S., Ogren, J. A., and Heintzenberg, J., 1988, Cloud droplets: solute concentration is size dependent,J. Geophys. Res. 93, 9477–9482.Google Scholar
  23. Norton, R. B., Carrol, M. A., Montzka, D. D., Hübler, G., Huebert, B. J., Lee, G., Warren, W. W., Riedley, B. A., and Wlega, J. G., 1992, Measurements of nitric acid and acrosol nitrate at the Mauna Loa Observatory during the Mauna Loa Observatory Photochemistry Experiment 1988,J. Geophys. Res. 97, 10,415–10,425.Google Scholar
  24. Orville, H. D. and Kopp, J., 1977, Numerical simulation of the life history of a hail-storm,J. Atmos. Sci. 34, 1596–1618.Google Scholar
  25. Qin, Y. and Chameides, W. L., 1986, The removal of soluble species by warm stratiform clouds,Tellus 38B, 285–299.Google Scholar
  26. Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds,Chemistry of multi-phase atmospheric systems (ed. Jaeschke), NATO ASI Series, G6, Springer-Verlag, Heidelberg, pp. 415–471.Google Scholar
  27. Seigneur, C., 1990, Status of subregional and mesoscale models; Vol 1: Air quality models, EPRI Report EN-6649 Project 2434-6, 81 pp.Google Scholar
  28. Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, San Diego.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • P. J. Grégoire
    • 1
  • N. Chaumerliac
    • 1
  • E. C. Nickerson
    • 2
  1. 1.LAMP, URA CNRS 267Université Blaise PascalAubière CedexFrance
  2. 2.FSL/NOAABoulderUSA

Personalised recommendations