Advertisement

Journal of Atmospheric Chemistry

, Volume 21, Issue 3, pp 187–221 | Cite as

Uncertainty and sensitivity analyses of OH-initiated dimethyl sulphide (DMS) oxidation kinetics

  • Andrea Saltelli
  • Jens Hjorth
Article

Abstract

A numerical experiment has been conducted on the OH-initiated tropospheric oxidation of DMS. This involved the selection of a set of reactions describing the OH-initiated oxidation kinetics and the conversion of the present level of uncertainty of the system into uncertainty ranges and distributions for the relevant system parameters (kinetic constants and initial concentrations). Uncertainties have been propagated through the model onto the output variables of interest. This has allowed (a) the uncertainty in model prediction to be quantified and compared with observations (uncertainty analysis) and (b) the relative importance of each input parameter in determining the output uncertainty to be quantified (sensitivity analysis). Output considered were the ratio of MSA/(SO2 + H2SO4) concentration at a given time, the ratio SO2/H2SO4, the total peroxynitrate species concentrations and the relative fraction of SO2 and H2SO4 formed through the various pathways. Conditional upon the model and data assumptions underlying the experiment, the following main conclusions were drawn:
  1. (1)

    The possibility of direct formation of SO3 without SO2 as intermediate as suggested by Bandyet al. (1992) and Yinet al. (1990), involving direct thermal decomposition of CH3SO3 · does not seem to play a major role in the overall generation of sulphate. This is relevant to the issue of gas to particle conversion over remote areas.

     
  2. (2)

    Reaction of CH3SOO · intermediate may be the most important pathway to the formation of SO2.

     
  3. (3)

    The dominating peroxynitrate is CH3S(O)2O2NO2.

     

Through sensitivity analysis the kinetic constants have been identified which — because of their uncertainty and of their impact on the output — mostly contribute to the output uncertainty.

Key words

Dimethyl sulphide sulphur dioxide methane sulphonic acid non sea-salt sulphate air chemical kinetics uncertainty analysis sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O. and Raemdonck, H., 1983, Dimethyl sulphide in the surface ocean and the marine atmosphere: a global view,Science 221, 744–747.Google Scholar
  2. Alcamo, J. and Bartnicki, J., 1990, The uncertainty of atmospheric source-receptor relationship in Europe,Atmospheric Environment 24A (8), 2169–2189.Google Scholar
  3. Bandy, A. R., Scott, D. L., Blomquist, B. W., Chen, S. M., and Thornton, D. C., 1992, Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer,Geophys. Res. Lett. 11, 1125–1127.Google Scholar
  4. Barnes, I., 1993, Private communication.Google Scholar
  5. Barnes, I., Bastian, V., and Becker, K. H., 1988, Kinetics and mechanisms of the reaction of OH radicals with dimethyl sulphide,Int. J. Chem. Kin. 20, 415–431.Google Scholar
  6. Barnes, I., Bastian, V., Becker, K. H., and Niki, H., 1987, FTIR spectroscopic studies of the CH3S + NO2 reaction under atmospheric conditions,Chem. Phys. Lett. 140, 451–457.Google Scholar
  7. Bates, T. S., Calhoun, J. A., and Quinn, P. K., 1992, Variations in the methanesulfonate to sulfate molar ratio in submicrometer particles over the South Pacific Ocean,J. Geophys. 97, 9859–9865.Google Scholar
  8. Bates, T. S., Charlson, R. J., and Gammon, R. H., 1987, Evidence for the climatic role of marine biogenic sulphur,Nature 329, 319–321.Google Scholar
  9. Berresheim, H., 1987, Biogenic sulfur emissions from the Subantarctic and Antarctic oceans,J. Geophys. Res. 92, 13245–13262.Google Scholar
  10. Berresheim, H., Eisele, F. L., Tanner, D. J., McInnes, L. M., Ramsey-Bell, D. C., and Covert, D. S., 1993, Atmospheric sulfur chemistry and cloud condensation nuclei (CCN) concentrations over the Northeastern Pacific Coast,J. Geophys. Res. 98, 12701–12711.Google Scholar
  11. Bürgermeister, S. and Georgii, H. W., 1991, Distribution of methane sulfonate, nss-sulfate and dimethylsulfide over the Atlantic and over the North Sea,Atmos. Environ. 25A, 587–595.Google Scholar
  12. Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., and Warren, S. G., 1991, Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols,Tellus 43AB, 152–163.Google Scholar
  13. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplancton, atmospheric sulphur, cloud albedo and climate,Nature 326, 655–661.Google Scholar
  14. Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., and Hofman, D. J., 1992, Climate forcing by anthropogenic aerosols,Science 255, 423–440.Google Scholar
  15. Conover, W. J., 1980,Practical Non-parametric Statistics. 2nd edn., Wiley, New York.Google Scholar
  16. Cukier, R. I., Levine, H. B., and Schuler, K. E., 1978, Nonlinear sensitivity analysis of multiparameter model systems,J. Comput. Phys. 26, 1–42.Google Scholar
  17. Cukier, R. I., Fortuin, C. M., Schuler, K. E., Petschek, A. G., and Schaibly, J. K., 1973, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients, part I. Theory,J. Chem. Phys. 59(8, 3873–3878.Google Scholar
  18. De More, W. B., Golden, D. M., Howard, C. J., Hampson, R. F., Kolb, C. E., Kurylo, M. J., Molina, M. J., Ravishankara, A. R., and Sander, S. P., 1992, Chemical kinetics and photochemical data for use in stratospheric models,JPL Publ. 92–20.Google Scholar
  19. Dominé, F., Ravishankara, A. R., and Howard, C. J., 1992, Kinetics and mechanisms of the reactions of CH3S, CH3SS, CH3SO and CH3SSO with O3 at 300 K and low pressures,J. Phys. Chem. 96, 2171–2178.Google Scholar
  20. Draper, N. R. and Smith, H., 1981,Applied Regression Analysis, Wiley, New York.Google Scholar
  21. Foley, J. A., Taylor, K. E., and Ghan, S. J., 1991, Planktonic dimethylsulfide and cloud albedo: an estimate of the feedback response,Climatic Change, 1–15.Google Scholar
  22. Good, A. and Thynne, J. C. J., 1967, Reactions of free radicals with sulphur dioxide,J. Chem. Soc. Faraday Trans. 63, 2708–2727.Google Scholar
  23. Hatakeyama, S., Izumi, K., and Akimoto, H., 1985, Yield of SO2 and formation of aerosol in the photooxidation of DMS under atmospheric conditions,J. Phys. Chem. 90, 4148–4156.Google Scholar
  24. Helton, J. C., 1993, Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal,Reliability Engineering and System Safety 42, 327–367.Google Scholar
  25. Helton, J. C., Garner, J. W., McCurley, R. D., and Rudeen, D. K., 1991, Sensitivity analysis techniques and results for the performance assessment at the waste isolation pilot plant,Sandia Laboratories Report SAND90-7103.Google Scholar
  26. Homma, T. and Saltelli, A., 1991, PREP (Statistical Pre-Processor); Program description and user guide,CEC/JRC Sci. Techn. Rep. EUR 13922 EN, Luxembourg.Google Scholar
  27. Homma, T. and Saltelli, A., 1994, Global sensitivity analysis of nonlinear models. Importance measures and Sobol' sensitivity indices, CEC/JRC Sci. Techn. Rep. EUR 16052 EN, Luxembourg.Google Scholar
  28. Hora, S. C. and Iman, R. L., 1986, A comparison of maximum/bounding and Bayesian/Monte Carlo for fault tree uncertainty analysis,Sandia Laboratories Report SAND85-2839.Google Scholar
  29. Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986, Kinetics and mechanism of OH reactions with organic sulfides,J. Phys. Chem. 90, 4148–4156.Google Scholar
  30. Iman, R. L. and Conover, W. J., 1987, A measure of top-down correlation,Technometrics 29 (3), 351–357.Google Scholar
  31. Iman, R. L. and Conover, W. J., 1982, A distribution free approach to inducing rank correlation among input variables,Comm. Statist. B11 (3), 311–334.Google Scholar
  32. Iman, R. L. and Helton, J. C., 1985, A comparison of uncertainty and sensitivity analysis techniques for computer models,Sandia Laboratories Report, SAND84-1461.Google Scholar
  33. Iman, R. L. and Helton, J. C., 1988, An investigation of uncertainty and sensitivity analysis techniques for computer models,Risk Analysis 8 (1), 71–90.Google Scholar
  34. Iman, R. L., Helton, J. C., and Campbell, J. E., 1978, Risk methodology for geological disposal of radioactive waste: sensitivity analysis techniques,Sandia Laboratory Report, SAND78-0912.Google Scholar
  35. Iman, R. L., Helton, J. C., and Campbell, J. E., 1981, An approach to sensitivity analysis of computer models, Parts I and II,J. Quality Tech. 13 (3, 4), 174–183 and 232–240.Google Scholar
  36. Ishigami, T. and Homma, T., 1989, An importance quantification technique in uncertainty analysis,Japan Atomic Energy Research Institute Report JAERI-M 89–111.Google Scholar
  37. Ishigami, T. and Homma, T., 1990, An importance quantification technique in uncertainty analysis for computer models,Proc. ISUMA '90, 1st Int. Symp. Uncertainty Modelling and Analysis, University of Maryland, USA, December 3–5, 1990, pp. 398–403.Google Scholar
  38. Jensen, N. R. and Hjorth, J., 1995, Evidence for the formation of a stable intermediate in the tropospheric oxidation of DMS,Geophys. Res. Lett., in press.Google Scholar
  39. Jensen, N. R., Hjorth, J., Lohse, C., Skov, H., and Restelli, G., 1991, Products and mechanism of the reaction between NO3 and dimethylsulphide in air,Atmos. Environ. 25A, 1897–1904.Google Scholar
  40. Jensen, N. R., Hjorth, J., Lohse, C., Skov, H., and Restelli, G., 1992, Products and mechanisms of the gas phase reactions of NO3 with CH3SCH3, CD3SCD3, CH3SH and CH3SSCH3,J. Atmos. Chem. 14, 95–108.Google Scholar
  41. Kiehl, J. T. and Briegleb, B. P., 1993, The relative roles of sulphate aerosols and greenhouse gases in climate forcing,Science 260, 311–314.Google Scholar
  42. Koga, S. and Tanaka, H., 1993, Numerical study of the exidation process of dimethylsulfide in the marine atmosphere,J. Atmos. Chem. 17, 201, 228.Google Scholar
  43. Langner, J. and Rodhe, H., 1991, A global three-dimensional model of the tropospheric sulfur cycle,J. Atmos. Chem. 13, 225–263.Google Scholar
  44. Langner, J., Rodhe, H., Crutzen, P. J., and Zimmerman, P., 1992, Anthropogenic influence on the distribution of tropospheric sulphate aerosol,Nature 359, 712–716.Google Scholar
  45. Lelieveld, J. and Heintzenberg, J., 1992, Sulphate cooling effect on climate through in-cloud oxidation of anthropogenic SO2,Science 258, 117–120.Google Scholar
  46. Liepman, D. and Stephanopoulos, G., 1985, Development and global sensitivity analysis of a closed ecosystem model,Ecological Modelling 30, 13–47.Google Scholar
  47. Lin, X. and Chameides, W. L., 1993, CCN formation from DMS oxidation without SO2 acting as an intermediate,Geophys. Res. Lett. 20 (7), 579–582.Google Scholar
  48. Mellouki, A., Jourdain, J. L., and Le Bras, G., 1988, Discharge flow study of the CH3S + NO2 reaction mechanism using Cl + CH3SH as the CH3S source,Chem. Phys. Lett. 2, 3, 231–236.Google Scholar
  49. Mihalopoulos, N., Nguyen, B. C., Boissard, C., Campin, J. M., Putaud, J. P., Belviso, S., Barnes, I., and Becker, K. H., 1992, Field study of dimethylsulfide oxidation in the boundary layer: Variations of dimethylsulfide, methanesulfonic acid, sulfur dioxide, non-sea-salt sulfate and Aitken nuclei at a coastal site,J. Atmos. Chem. 14, 459–477.Google Scholar
  50. Pandis, S. N. and Seinfeld, J. H. 1989, Sensitivity analysis of a chemical mechanism for aqueousphase atmospheric chemistry,J. Geophys. Res. 94, 1105–1126.Google Scholar
  51. Putaud, J.-P., Belviso, S., Nguyen, B. C., and Mihalopoulos, N., 1993, Dimethylsulfide, aerosols and condensation nuclei over the tropical Northeastern Atlantic Ocean,J. Geophys. Res. 98, 14863–14871.Google Scholar
  52. Restelli, G. and Angeletti, G. (eds.), 1993,Proc. Int. Symp. Dimethylsulfide, Oceans, Atmosphere and Climate, Belgirate (I), Kluwer, Dordrecht.Google Scholar
  53. Saltelli, A., Andres, T., and Homma, T., 1993a, Sensitivity analysis of model output. An investigation of new techniques,Comp. Statistics Data Analysis 15, 211–238.Google Scholar
  54. Saltelli, A. and Homma, T., 1991, SPOP; Program description and user guide,CEC/JRC Scient. Techn. Report EUR 13924 EN, Luxembourg.Google Scholar
  55. Saltelli, A. and Homma, T., 1992, Sensitivity analysis for model output. Performance of black-box techniques on three international benchmark exercises,Comp. Statistics Data Analysis 13, 73–94.Google Scholar
  56. Saltelli, A., Homma, T., Raes, F., Wilson, J., and Van Dingenen, R., 1993b, Modelling of the sulphur cycle. From DMS to cloud particles, see Restelli and Angeletti 1993 (eds.).Google Scholar
  57. Saltelli, A. and Marivoet, J., 1988, Safety assessment for nuclear wate disposal. Some observations about actual risk calculations,Radioactive Waste Management and the Nuclear Fuel Cycle 9 (4), 309–321.Google Scholar
  58. Saltelli, A. and Marivoet, J., 1990, Nonparametric statistics in sensitivity analysis for model output; A comparison of selected techniques,Reliability Engineering and System Safety 28, 229–253.Google Scholar
  59. Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1986, Methane sulfonic acid and non-sea-salt sulfate in pacific air: Regional and seasonal variations,J. Atmos. Chem. 4, 227–240.Google Scholar
  60. Schaibly, J. K. and Schuler, K. E., 1973, Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. Part II, Applications,J. Chem. Phys. 59 (8), 3879–3888.Google Scholar
  61. Schwartz, S. E., 1988, Are global cloud albedo and climate controlled by marine phytoplankton?Nature 336, 441–445.Google Scholar
  62. Shaw, G. E., 1993, Bio-controlled thermostasis involving the sulphur cycle,Climatic Change 5, 297–303.Google Scholar
  63. Sobol', I. M., 1990, Sensitivity estimates for nonlinear mathematical models,Matematicheskoye Modelirovaniye, 1990,2 (1), 112–118 (in Russian), translated inMath. Model. Comput. Experiments 1 (4), 407–414 (1993).Google Scholar
  64. Sobol', I. M., 1991, Quasi Monte Carlo methods,Progress in Nuclear Energy 24, 55–61.Google Scholar
  65. Spiro, P. A., Jacob, D. J., and Logan, J. A., 1992, Global inventory of sulphur emissions with 1° × 1° resolution,J. Geophys. Res. 97, 6023–6036.Google Scholar
  66. Thompson, A. M. and Stewart, R. W., 1991, Effects of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model,J. Geophys. Res. 96, D7, 13,089–13,108.Google Scholar
  67. Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R., 1992, Observation of CH3S addition to O2 in the gas phase,J. Phys. Chem. 96, 7502–7505.Google Scholar
  68. Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R., 1993, Reactions of CH3S and CH3SOO with O3, NO2 and NO,J. Phys. Chem. 97, 5926–5934.Google Scholar
  69. Turnipseed, A. A. and Ravishankara, A. R., 1993, The atmospheric oxidation of dimethyl sulfide: Elementary steps in a complex mechanism, see Restelli and Angeletti 1993 (eds.).Google Scholar
  70. Tyndall, G. S. and Ravishankara, A. R., 1989, Kinetics and mechanisms of the reactions of CH3S with O2 and NO2 at 298 K,J. Phys. Chem. 94, 5839–5847.Google Scholar
  71. Tyndall, G. S. and Ravishankara, A. R., 1991, Atmospheric oxidation of reduced sulfur species,Int. J. Chem. Kinet. 23, 483–527.Google Scholar
  72. Vajda, S., Valko, P., and Turànyi, T., 1985, Principal component analysis of kinetic models,Int. J. Chem. Kinetics 17, 55–81.Google Scholar
  73. Van Dingenen, R., Jensen, N. R., Hjorth, J., and Raes, F., 1994, Peroxynitrate formation during the night-time oxidation of dimethylsulphide: its role as a reservoir species for aerosol formation,J. Atmos. Chem.,18, 211–237.Google Scholar
  74. Wigley, T. M., 1989, Possible climate change due to SO2-derived cloud condensation nuclei,Nature 339, 365–339.Google Scholar
  75. Yin, F., Grosjean, D., and Seinfeld, J. H., 1990, Photooxidation of dimethyl sulfide and dimethyl disulfide, I. Mechanism development,J. Atmos. Chem. 11 (4), 309–364.Google Scholar
  76. Yin, F., Grosjean, D., Flagan, R. F., and Seinfeld, J. H., 1990b, Photooxidation of dimethyl sulfide and dimethyl disulfude, II. Mechanism evaluation,J. Atmos. Chem. 11 (4), 365–399.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Andrea Saltelli
    • 1
  • Jens Hjorth
    • 1
  1. 1.Environment InstituteJoint Research Centre of the European CommissionIspra (I)Italy

Personalised recommendations