Advertisement

Journal of comparative physiology

, Volume 92, Issue 3, pp 293–316 | Cite as

Frequency and directional responses of cilia to membrane potential changes inParamecium

  • Hans Machemer
Article

Summary

Ciliary motor reactions and membrane responses to injected current stimulation inParamecium caudatum were recorded with a combined electrophysiological and high-speed cine system to investigate relations between ciliary activity and membrane potential. The power stroke of the cilia normally directed to the right rear rotates clockwise to a more posterior orientation in response to hyperpolarizing stimulation. Depolarization induces a counterclockwise shift, usually leading to the rapid reversal of beat direction toward the anterior end (Fig. 15). Ciliary frequency is increased either with hyperpolarization or with moderate or strong depolarization of the cell membrane. The frequency response is linked to the directional response in such a way that minimal frequency occurs during transition from reversed to normal beating, and that with increasing clock-wise or counterclockwise angular deviation of the power stroke from this sector of transition the frequency of beat is increased. In the course of transition from the reversed to normal beating the cilia are inactivated, i.e. they stick out perpendicularly to the cell surface without a polarized beat. A depression in normal beating activity somewhat resembling inactivation occurs with small depolarizations. Hyperpolarization-induced frequency time courses are significantly slower than those evoked by membrane depolarization. The role of transmembrane calcium fluxes and consequent modification of intraciliary calcium concentrations is considered with regard to the observed ciliary responses.

Keywords

Directional Response Calcium Flux Motor Reaction Power Stroke Membrane Potential Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckert, R.: Bioelectric control of ciliary activity. Science176, 473 (1972)Google Scholar
  2. Eckert, R., Murakami, A.: Calcium dependence of ciliary activity in the oviduct of the salamanderNecturus. J. Physiol. (Lond.)226, 699 (1972)Google Scholar
  3. Eckert, R., Naitoh, Y.: Passive electrical properties ofParamecium and problems of ciliary coordination. J. gen. Physiol.55, 467 (1970)Google Scholar
  4. Epstein, M., Eckert, R.: Membrane control of ciliary activity in the protozoanEuplotes. J. exp. Biol.58, 437 (1973)Google Scholar
  5. Gibbons, B.H., Gibbons, I.R.: Flagellar movement and adenosine triphosphate activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol.54, 75 (1972)Google Scholar
  6. Grundfest, H.: Some comparative biological aspects of membrane permeability control. Fed. Proc.26, 1613 (1967)Google Scholar
  7. Kinosita, H.: Electrical potentials and ciliary response inOpalina. J. Fac. Sci. Tokyo Univ. IV7, 1 (1954)Google Scholar
  8. Kinosita, H., Dryl, S., Naitoh, Y.: Changes in the membrane potential and the response to stimuli inParamecium. J. Fac. Sci. Tokyo Univ. IV10, 291 (1964)Google Scholar
  9. Machemer, H.: Korrelation zwischen Membranpotential und Fortbewegung beiStylonychia. Naturwissenschaften57, 398 (1970)Google Scholar
  10. Machemer, H.: Properties of polarized ciliary beat inParamecium. Acta protozool.11, 295 (1972a)Google Scholar
  11. Machemer, H.: Temperature influences on ciliary beat and metachronal coordination inParamecium. J. Mechanochem. Cell Motility1, 57 (1972b)Google Scholar
  12. Machemer, H.: Ciliary activity and metachronism in Protozoa. In: Cilia and Flagella, ed. M. A. Sleigh. New York, London: Academic Press 1974Google Scholar
  13. Machemer, H., Eckert, R.: Electrophysiological control of reversed ciliary beating inParamecium. J. gen. Physiol.61, 572 (1973)Google Scholar
  14. Naitoh, Y., Eckert, R.: Electrical properties ofParamecium caudatum: Modification by bound and free cations. Z. vergl. Physiol.61, 427 (1968)Google Scholar
  15. Naitoh, Y., Eckert, R.: Electrophysiology of the ciliate protozoa. In: Experiments in physiology and biochemistry, vol. V, ed. G. A. Kerkut. New York, London: Academic Press 1972Google Scholar
  16. Naitoh, Y., Eckert, R.: The control of ciliary activity in Protozoa. In: Cilia and Flagella, ed. M. A. Sleigh. New York, London: Academic Press 1974Google Scholar
  17. Naitoh, Y., Eckert, R., Friedman, K.: A regenerative calcium response inParamecium. J. exp. Biol.56, 667 (1972)Google Scholar
  18. Naitoh, Y., Kaneko, H.: ATP-Mg-reactivated Triton-extracted models ofParamecium: Modification of ciliary movement by calcium ions. Science176, 523 (1972)Google Scholar
  19. Naitoh, Y., Kaneko, H.: Control of ciliary activities by adenosinetriphosphate and divalent cations in Triton-extracted models ofParamecium caudatum. J. exp. Biol.58, 657 (1973)Google Scholar
  20. Párducz, B.: Reizphysiologische Untersuchungen an Ciliaten. V. Zum physiologischen Mechanismus der sog. Fluchtreaktion und der Raumorientierung. Acta biol. Acad. Sci. hung.7, 73 (1956)Google Scholar
  21. Takahashi, K., Baba, S.A., Murakami, A.: The excitable cilia of the tunicate,Ciona intestinalis. J. Fac. Sci. Tokyo Univ. IV13, 123 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Hans Machemer
    • 1
  1. 1.Institut für Biologie IIIUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations