Skip to main content
Log in

Henry's law and the behavior of weak acids and bases in fog and cloud

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Experimental data from two field experiments on ground based clouds were used to study the distribution of formic acid, acetic acid, ammonia and S(IV) species between liquid and gas phase. The ratio of the concentrations of these compounds between the phases during concurrent measurements was compared to ratios expected according to Henry's law (considering the pH influence). Large discrepancies of several orders of magnitude were seen. Three hypotheses have been investigated to explain the observed discrepancies: The existence of a microscale equilibrium which does not persist in a bulk sample, a thermodynamic shift of the equilibrium due to competing reactions, and nonequilibrium conditions due to mass transfer limitations. Approximate quantitative calculations show that none of these hypotheses is sufficient to explain all of the discrepancies, so a combination of different effects seems to be responsible for this observation. The same theoretical considerations also suggest that mass transfer limitation may be an important factor for highly soluble compounds. The data presented here indicates that it is not possible to simply extrapolate interstitial gas phase composition from measured bulk liquid phase concentrations of a fog or cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[r max]:

liquid phase molar uptake rate (mol l−1 s−1)

[A g ]:

concentration ofA in gas phase (atm)

[A l ]:

concentration ofA in liquid phase (mol l−1)

[A g , 0]:

concentration ofA in gas phase (atm) at time 0

LWC:

liquid water content (g m−3)

R :

universal gas constant (0.082 l atm mol−1 K−1

D g :

diffusivity (for all gases 0.1 cm2 s−1 was used)

K * H :

effective Henry's law coefficient (mol l−1 atm−1)

t f :

lifetime of fog droplet (s)

a :

droplet radius (cm)

α :

accommodation coefficient

R :

factor of discrepancy

T :

temperature (K)

v :

mean molecular speed (cm s−1) formic acid: 35 000 acetic acid: 31 000 ammonia: 58 000

References

  • Berner, A., 1988, The collection of fog droplets by a jet impaction stage,Sci. Total Environ. 73, 217–228.

    Google Scholar 

  • Bongartz, A., 1993, Massen-Akkomodationskoeffizienten schwacher atmosphärischer Säuren und Basen, PhD-Thesis, University of Bonn.

  • Bongartz, A. and Schurath, U., 1993, Recent determination of mass accommodation coefficients on liquid water with an improved liquid jet technique, in P. M. Borrellet al. (eds),Photooxidants: Precursors and Products, Proc. EUROTRAC Symposium '92, SPB Academic Publishing, The Hague, The Netherlands, pp. 639–643.

    Google Scholar 

  • Bower, K. N., Hill, T. A., Coe, H., and Choularton, T. W., 1991, SO2 oxidation in an entraining cloud model with explicit microphysics,Atmos. Environ. 25A, 2401–2418.

    Google Scholar 

  • Capel, P. D., Gunde, R., Zurcher, F., and Giger, W., 1990, Carbon speciation and surface tension of fog,Environ. Sci. Technol. 24, 722–727.

    Google Scholar 

  • Chang, D. P. Y. and Hill, R. C., 1980, Retardation of aqueous droplet evaporation by air pollutants,Atmos. Environ. 14, 803–807.

    Google Scholar 

  • Cofer III, W. C., Collings, V. G., and Talbot, R. W., 1985, Improved aqueous scrubber for collection of soluble atmospheric trace gases,Environ. Sci. Technol. 19, 557–560.

    Google Scholar 

  • Colvile, R. N., Sander, R., Choularton, T. W., Bower, K. N., Inglis, D. W. F., Wobrock, W., Maser, R., Schell, D., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Hallberg, A., Ogren, J. A., Noone, K. J., Facchini, M. C., Fuzzi, S., Orsi, G., Arends, B. G., Winiwarter, W., Schneider, T., and Berner, A., 1994, Computer modelling of clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 189–229 (this issue).

    Google Scholar 

  • Dana, M. T., Hales, J. M., and Wolf, M. A., 1975, Rain scavenging of SO2 and sulfate from power plant plumes,J. Geophys. Res. 80, 4119–4129.

    Google Scholar 

  • Deister, U., Neeb, R., Helas, G., Warneck, P., 1986, Temperature dependence of the equilibrium CH2(OH)2 + HSO 3 = CH2(OH)SO 3 + H2O in aqueous solution,J. Phys. Chem. 90, 3213.

    Google Scholar 

  • Facchini, M. C., Lind, J., Orsi, G., Fuzzi, S., 1990, Chemistry of carbonyl compounds in the Po Valley fogwater,Sci. Total Environ. 91, 79–86.

    Google Scholar 

  • Facchini, M. C., Fuzzi, S., Kessel, M., Wobrock, W., Jaeschke, W., Arends, B. G., Möls, J. J., Berner, A., Solly, I., Kruisz, C., Reischl, G., Pahl, S., Hallberg, A., Ogren, J. A., Fierlinger-Oberlinninger, H., Marzorati, A., Schell, D., 1992a, The chemistry of nitrogen and sulfur species in a fog system: A multiphase approach,Tellus 44B, 505–521.

    Google Scholar 

  • Facchini, M. C., Fuzzi, S., Lind, J. A., Fierlinger-Oberlinninger, H., Kalina, M., Puxbaum, H., Winiwarter, W., Arends, B. G., Wobrock, W., Jaeschke, W., Berner, A., Kruisz, C., 1992b, Phase-partitioning and chemical reactions of low molecular weight organic compounds in fog,Tellus 44B, 533–544.

    Google Scholar 

  • Fuzzi, S., Facchini, M. C., Schell, D., Wobrock, W., Winkler, P., Arends, B. G., Kessel, M., Möls, J. J., Pahl, S., Schneider, T., Berner, A., Solly, I., Kruisz, C., Kalina, M., Fierlinger, H., Hallberg, A., Vitali, P., Santoli, L., Tigli, G., Multiphase chemistry and acidity of clouds at Kleiner Feldberg,J. Atmos. Chem. 19, 87–106 (this issue).

  • Fuzzi, S., Facchini, M. C., Orsi, G., Lind, J. A., Wobrock, W., Kessel, M., Maser, R., Jaeschke, W., Enderle, K. H., Arends, B. G., Berner, A., Solly, I., Kruisz, C., Reischl, G., Pahl, S., Kaminski, U., Winkler, P., Ogren, J. A., Noone, K. J., Hallberg, A., Fierlinger-Oberlinninger, H., Puxbaum, H., Marzorati, A., Hansson, H.-C., Wiedensohler, A., Svenningsson, I. B., Martinsson, B. G., Schell, D., Georgii, H.-W., 1992, The Po Valley Fog Experiment: An overview,Tellus 44B, 448–468.

    Google Scholar 

  • Gill, P. S., Graedel, T. E., and Weschler, C. J., 1983, Organic films on atmospheric aerosol particles, fog droplets, raindrops and snowflakes,Rev. Geophys. Space Phys. 21, 903–920.

    Google Scholar 

  • Harvey, E. A., Smith, W., 1959, The absorption of carbon dioxide by a quiescent liquid,Chem. Engng. Sci. 10, 274–280.

    Google Scholar 

  • Hong, M. S., Carmichael, G. R., 1983, An investigation of sulfate production in clouds using a flow-through chemical reactor model approach,J. Geophys. Res. 88, 10733.

    Google Scholar 

  • Jacob, D. J., Munger, J. W., Waldman, J. M., Hoffmann, M. R., 1986, The H2SO4-HNO3-NH3 system at high humidities and in fogs. Spatial and temporal patterns in the San Joaquin Valley of California,J. Geophys. Res. 91, 1073–1088.

    Google Scholar 

  • Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., Kolb, C. E., 1991, Uptake of gas-phase alcohol and organic acid molecules by water surfaces,J. Phys. Chem. 95, 6329–6336.

    Google Scholar 

  • Keene, W. C., Maben, J. M., Galloway, J. N., Mosher, B. W., Talbot, R. W., Munger, W. R., Jacob, D. J., Daube, B. R., Artz, R. S., 1992, Carboxylic acids in clouds over central Virginia, U.S.A.: Phase partitioning, thermodynamic relationships, and implications for aqueous-phase production, Paper presented at the AGU Spring Meeting, 12–16 May, Montreal, Canada.

  • Keuken, M. P., Schoonebeek, C. A. M., van Wensveen-Louter, A., Slanina, J., 1988, Simultaneous sampling of NH3, HNO3, HCl, SO2 and H2O2 in ambient air by a wet annular denuder system,Atmos. Environ. 22, 2541–2548.

    Google Scholar 

  • Munger, J. W., Tiller, c. T., Hoffmann, M. R., 1986, Determination of hydroxymethanesulfonate in fog water,Science 231, 247–249.

    Google Scholar 

  • Noone, K. J., Ogren, J. A., Hallberg, A., Heintzenberg, J., Hansson, H.-C., Svenningsson, I. B., Wiedensohler, A., Fuzzi, S., Facchini, M. C., Arends, B. G., Berner, A., 1992, Changes in aerosol size- and phase distributions due to physical and chemical processes in fog,Tellus 44B, 489–504.

    Google Scholar 

  • Ogren, J. A., Charlson, R. J., 1992, Implications for models and measurements of chemical inhomogeneities among cloud droplets,Tellus 44B, 208–225.

    Google Scholar 

  • Pandis, S. N., Seinfeld, J. H., 1991, Should bulk cloudwater or fogwater samples obey Henry's law?J. Geophys. Res. 96, 10791–10798.

    Google Scholar 

  • Perona, M. J., 1992, The solubility of hydrophobic compounds in aqueous droplets,Atmos. Environ. 26A, 2549–2553.

    Google Scholar 

  • Rubel, G., Gentry, J. W., 1984, Measurement of the kineticxs of solution droplets in the presence of adsorbed monolayers: Determination of water accommodation coefficients,J. Phys. Chem. 88, 3142–3148.

    Google Scholar 

  • Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in W. Jaeschke (ed.),Chemistry of Multiphase Atmospheric Systems, NATO ASI Series Vol. G6, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  • Seaver, M., Peele, J. R., Manuccia, T. J., Rubel, G. O., Ritchie, G., 1992, Evaporation kinetics of ventilated waterdrops coated with octadecanol monolayers,J. Phys. Chem. 96, 6389–6394.

    Google Scholar 

  • Seel, F., 1979,Grundlagen der Analytischen Chemie, 7th edn., Verlag Chemie, Weinheim, New York.

    Google Scholar 

  • Seinfeld, J. H., 1986,Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.

    Google Scholar 

  • Valsaraj, K. T., Thoma, G. J., Reible, D. D., Thibodeaux, L. J., 1993, On the enrichment of hydrophobic organic compounds in fog droplets,Atmos. Environ. 27A, 203–210.

    Google Scholar 

  • Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., Jaeschke, W., 1988, Organic acid gas and liquid phase measurements in Po Valley fall-winter conditions in the presence of fog,Tellus 40B, 348–357.

    Google Scholar 

  • Winiwarter, W., Brantner, B., Puxbaum, H., 1992, Comment on ‘Should bulk cloudwater or fogwater samples obey Henry's law?’ by S. N. Pandis and J. H. Seinfeld,J. Geophys. Res. 97, 6075–6078.

    Google Scholar 

  • Winkler, P., 1986, Observation of fog water composition in Hamburg, in H. W. Georgii (ed.),Atmospheric Pollutants in Forest Areas, 143–151, D. Reidel, Dordrecht.

    Google Scholar 

  • Wobrock, W., Schell, D., Maser, R., Jaeschke, W., Georgii, H. W., Wieprecht, W., Arends, B. G., Möls, J. J., Kos, G. P. A., Fuzzi, S., Facchini, M. C., Orsi, G., Berner, A., Solly, I., Kruisz, C., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Ogren, J. A., Noone, K. J., Hallberg, A., Pahl, S., Schneider, T., Winkler, P., Winiwarter, W., Colvile, R. N., Choularton, T. W., Flossmann, A. I., Borrmann, S., 1994, The Kleiner Feldberg cloud experiment 1990. An overview,J. Atmos. Chem. 19, 3–35 (this issue).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winiwarter, W., Fierlinger, H., Puxbaum, H. et al. Henry's law and the behavior of weak acids and bases in fog and cloud. J Atmos Chem 19, 173–188 (1994). https://doi.org/10.1007/BF00696588

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696588

Key words

Navigation