Journal of Atmospheric Chemistry

, Volume 20, Issue 2, pp 141–162 | Cite as

Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor

  • D. C. Hovde
  • A. C. Stanton
  • T. P. Meyers
  • D. R. Matt
Article

Abstract

We describe a fast response methane sensor based on the absorption of radiation generated with a near-infrared InGaAsP diode laser. The sensor uses an open path absorption region 0.5 m long; multiple pass optics provide an optical path of 50 m. High frequency wavelength modulation methods give stable signals with detection sensitivity (S/N=1, 1 Hz bandwidth) for methane of 65 ppb at atmospheric pressure and room temperature. Improvements in the optical stability are expected to lower the current detection limit. We used the new sensor to measure, by eddy correlation, the CH4 flux from a clay-capped sanitary landfill. Simultaneously we measured the flux of CO2 and H2O. From seven half-hourly periods of data collected after a rainstorm on November 23, 1991, the average flux of CH4 was 17 mmol m−2 hr−1 (6400 mg CH4 m−2 d−1) with a coefficient of variation of 25%. This measurement may underrepresent the flux by 15% due to roll-off of the sensor response at high frequency. The landfill was also a source of CO2 with an average flux of 8.1 mmol m−2 hr−1 (8550 mg CO2 m−2 d−1) and a coefficient of variation of 26%. A spectral analysis of the data collected from the CH4, CO2, and H2O sensors showed a strong similarity in the turbulent transfer mechanisms.

Key words

Methane carbon dioxide flux landfill diode laser eddy correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, D. W., 1966, Statistics of atomic frequency standards, Proc. IEEE54, 221–230.Google Scholar
  2. Anderson, S. M. and Zahniser, M. S., 1991, Open-path tunable diode laser absorption for eddy correlation flux measurements of atmospheric trace gases, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 167–178.Google Scholar
  3. Arndt, R., 1965, Analytical line shapes for Lorentzian signals broadened by modulation,J. Appl. Phys. 36, 2522–2524.Google Scholar
  4. Auble, D. L. and Meyers, T. P., 1992, An open path, fast response infrared absorption gas analyzer for H2O and CO2,Boundary-Layer Meteorol. 59, 243–256.Google Scholar
  5. Baldocchi, D. D., Hicks, B. B., and Meyers, T. P., 1988, Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods,Ecology 69 (5), 1331–1340.Google Scholar
  6. Bingemer, H. G. and Crutzen, P. J., 1987, The production of methane from soil wastes,J. Geophys. Res. 92(D2), 2181–2187.Google Scholar
  7. Bobin, B., 1972, Interpretation de la bande harmonique 2v 3 du methane12CH4 (de 5890 a 6107 cm−1),J. Physique 33, 345–352.Google Scholar
  8. Bogner, J. E. and Vogt, M. C., 1991, Methane emissions from sanitary landfills, Argonne National Laboratory, Argonne, Illinois, NTIS Document No. DE91-010652.Google Scholar
  9. Bomse, D. S., Stanton, A. C. and Silver, J. A., 1992, Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,Appl. Opt. 31, 718–731.Google Scholar
  10. Bomse, D. S., 1991, Dual-modulation laser line-locking scheme,Appl. Opt. 30, 2922–2924.Google Scholar
  11. Businger, J. A., 1986, Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques,J. Climate Appl. Meteorol. 25, 1100–1124.Google Scholar
  12. Cassidy, D. T. and Reid, J., 1982, Harmonic detection with tunable diode lasers — two-tone modulation,Appl. Phys. B. 29, 279–285.Google Scholar
  13. Cicerone, R. J. and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane,Global Biogeochem. Cycles 2, 299–328.Google Scholar
  14. Cooper, D. E. and Carlisle, C. B., 1988, High sensitivity FM spectroscopy with a lead-salt diode laser,Opt. Lett. 13, 719–721.Google Scholar
  15. Crutzen, P. J., 1991, Methane's sinks and sources,Nature 350, 380–381.Google Scholar
  16. Darnton, L. and Margolis, J. S., 1973, The temperature dependence of the half widths of some self-and foreign-gas-broadened lines of methane,J. Quant. Spectrosc. Radiat. Transfer 13, 969–976.Google Scholar
  17. Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., Anderson, S. M., Kebabian, P. L., McManus, J. B., and Kolb, C. E., 1992, Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra,J. Geophys. Res. 97, 16,627–16,643.Google Scholar
  18. Fox, K., Halsey, G. W., Daunt, S. J., Blass, W.E., and Jennings, D. E., 1980, Anomalous13CH4:12CH4 line strengths in 2v 3,J. Chem. Phys. 72, 4657–4659.Google Scholar
  19. Herriott, D. R., Kogelnik, H., and Kompfner, R., 1964, Off-axis paths in spherical mirror interferometers,Appl. Opt. 3, 523–526.Google Scholar
  20. Hastie, D. R., Mackay, G. I., Iguchi, T., Ridley, B. A., Schiff, H. I., 1983, Tunable diode laser systems for measuring trace gases in tropospheric air,Environ. Sci. and Technol. 17, 352A-364A.Google Scholar
  21. Hicks, B. B., Matt, D. R., and McMillen, R. T., 1989, A micrometeorological investigation of surface exchange of O3, SO2 and NO2: A case study,Boundary-Layer Meteorol. 47, 321–336.Google Scholar
  22. Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., and Zimmerman, G. A., 1990, Minimizing flow distortion errors in a sonic anemometer,Boundary-Layer Meteorol. 53, 103–115.Google Scholar
  23. Khalil, M. A. K. and Rasmussen, R. A., 1990, Constraints on the global sources of methane and an analysis of recent budgets,Tellus 42B, 229–236.Google Scholar
  24. Lenschow, D. and Kristensen, L., 1985, Uncorrelated noise in turbulence measurements,J. Atmos. Ocean. Tech. 2, 68–81.Google Scholar
  25. Lubken, F.-J., Eng, R., Karecki, D. R., Mackay, G. I., Nadler, S., and Schiff, H. I., 1991, The effect of water vapour broadening on methane eddy correlation flux measurements,J. Atmos. Chem. 13, 97–108.Google Scholar
  26. Margolis, J. S., 1973, Line strength measurements of the 2v 3 band of methane,J. Quant. Spectrosc. Radiat. Transfer 13, 1097–1103.Google Scholar
  27. McManus, J. B., Kebabian, P. L., and Kolb, C. E., 1989, Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser,Appl. Opt. 28, 5016–5023.Google Scholar
  28. Mohebati, A. and King, T. A., 1988, Remote detection of gases by diode laser spectroscopy,J. Mod. Optics 35, 319–324.Google Scholar
  29. Moore, T. R. and Roulet, N. T., 1991, A comparison of dynamic and static chambers from methane emission measurements from subarctic fens,Atmosphere-Ocean 29(1), 102–109.Google Scholar
  30. Moore, T. R. and Knowles, R., 1990, Methane emissions from fen, bog, and swamp peatlands in Quebec,Biogeochemistry 11, 45–61.Google Scholar
  31. Moore, C. J., 1986, Frequency response corrections for eddy correlation systems,Boundary-Layer Meteorol. 37, 17–35.Google Scholar
  32. Ritter, J. A., Lenschow, D., Barrick, J. D. W., Gregory, G., Sachse, G. W., Hill, G., and Woerner, M., 1990, Airborne flux measurements and budget estimates of trace species of the Amazon Basin during the GTE/ABLE 2B Expedition,J. Geophys. Res. 95, 16,785–16,886.Google Scholar
  33. Ritter, J. A., Barrick, J. D. W., Sachse, G. W., Hill, G. F., Gregory, G. L., Woerner, M. A., and Watson, C. E., 1992, Airborne flux measurements of trace gas species in an Arctic boundary layer,J. Geophys. Res. 97, 16601.Google Scholar
  34. Sachse, G. W., Collins, J. E. Jr., Hill, G. F., Wade, L. O., Burney, L. G., and Ritter, J. A., 1991, Airborne tunable diode laser sensor for high-precision concentration and flux measurements of carbon monoxide and methane, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 157–166.Google Scholar
  35. Sarangi, S. and Varanasi, P., 1974, Measurement of intensities of multiplets in the 2v 3-band of methane at low temperatures,J. Quant. Spectrosc. Radiat. Transfer 14, 365–376.Google Scholar
  36. Sass, R. L., Fisher, F. M., and Harcombe, P. A., 1990, Methane production and emission in a Texas rice field,Global Biogeochemical Cycles,4(1), 47–68.Google Scholar
  37. Schuepp, P. H., Leclerc, M. L., MacPherson, J. I., and Desjardins, R. L., 1990, Footprint predictions of scalar fluxes from analytical solutions of the diffusion equation,Boundary-Layer Meteorol. 50, 355–373.Google Scholar
  38. Senior, E. and Kasali, G. B., 1990, Landfill gas, in E. Senior (ed.),Microbiology of Landfill Sites, CRC Press, Boca Raton, Florida.Google Scholar
  39. Shimose, Y., Okamoto, T., Maruyama, A., Aizawa, M., and Nagai, H., 1991, Remote sensing of methane gas by differential absorption using a wavelength tunable DFB LD,IEEE Photon. Technol. Lett. 3, 86–87.Google Scholar
  40. Silver, J. A. and Stanton, A. C., 1988, Optical interference fringe reduction in laser absorption experiments,Appl. Opt. 27, 1914–1917.Google Scholar
  41. Silver, J. A., 1992, Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods,Appl. Opt. 31, 707–717.Google Scholar
  42. Stanton, A. C. and Hovde, D. C., 1992,Laser Focus World, August issue, 117–120.Google Scholar
  43. Tohjima, Y. and Wakita, H., 1993, Estimation of methane discharge from a plume: A case of landfill,Geophys. Res. Lett. 20, 2067–2070.Google Scholar
  44. Uehara, K. and Tai, H., 1992, Remote detection of methane with a 1.66 µm diode laser,Appl. Opt. 31, 809–814.Google Scholar
  45. Varanasi, P., 1971, Collision-broadened half-widths and shapes of methane lines,J. Quant. Spectrosc. Radiat. Transfer 11, 1711–1724.Google Scholar
  46. Verma, S. B., Ullman, F. G., Billesbach, D., Clement, R. J., and Kim, J., 1992, Eddy correlation measurements of methane flux in a northern peatland ecosystem,Boundary-Layer Meteorol. 58, 289–304.Google Scholar
  47. Webb, E. K., Pearman, G. I., and Leuning, R., 1980, Correction of flux measurements for density effects due to heat and water vapour transfer,Q. J. R. Meteorol. Soc. 106, 85–100.Google Scholar
  48. Webster, C. R., 1985, Brewster-plate spoiler: A novel method for reducing the amplitude of interference fringes that limit tunable laser absorption,J. Opt. Soc. Am. B 2, 1464–1470.Google Scholar
  49. Werle, P., Josek, K., and Slemr, F., 1991, Application of FM spectroscopy in trace gas monitoring: A study of some factors influencing the instrument design, in H. I. Schiff (ed.),Measurement of Atmospheric Gases, Proc. SPIE 1433, 128–135.Google Scholar
  50. Zahniser, M. S., Kebabian, P. L., Anderson, S., Freedman, A., and Kolb, C. E., 1987, IR laser absorption eddy correlation measurement devices for trace atmospheric gases,AIP Conf. Proc. 160, 690–692.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • D. C. Hovde
    • 1
  • A. C. Stanton
    • 1
  • T. P. Meyers
    • 2
  • D. R. Matt
    • 2
  1. 1.Southwest Sciences, Inc.Santa FeUSA
  2. 2.National Oceanic and Atmospheric AdministrationAtmospheric Turbulence and Diffusion DivisionOak RidgeUSA

Personalised recommendations